

Deep Learning on Graphs for Natural Language Processing

Yu Chen Facebook Al

July 8th, 2021

Joint work with Lingfei Wu, Heng Ji, Yunyao Li and Bang Liu

Outline

DLG4NLP Introduction

- Why Graphs for NLP?
- Conventional ML for NLP
- Deep Learning on Graphs: Foundations and Models

DLG4NLP

Foundations

- Graph Construction for NLP
- Graph Representation Learning for NLP
- Graph Encoder-Decoder Models for NLP

DLG4NLP Applications

- Natural Question Generation
- Summarization

DLG4NLP Introduction

Graph-structured data are ubiquitous

Internet

Biomedical graphs

Social networks

Program graphs

Financial transactions

Scene graphs

Graphs are ubiquitous in NLP As Well

Natural Language Processing: A Graph Perspective

- Represent natural language as a bag of tokens
 - BOW, TF-IDF
 - Topic Modeling: text as a mixture of topics
- Represent natural language as a sequence of tokens
 - Linear-chain CRF
 - Word2vec, Glove
- Represent natural language as a graph
 - Dependency graphs, constituency graphs, AMR graphs, IE graphs, and knowledge graphs
 - Text graph containing multiple hierarchies of elements, i.e. document, sentence and word

Graph Based Methods for NLP

- Random Walk Algorithms
 - Generate random paths, one can obtain a stationary distribution over all the nodes in a graph
 - Applications: semantic similarity of texts, name disambiguation
- Graph Clustering Algorithms
 - Spectral clustering, random walk clustering and min-cut clustering for text clustering
- Graph Matching Algorithms
 - Compute the similarity between two graphs for textual entailment task
- Label Propagation Algorithms
 - Propagate labels from labeled data points to previously unlabeled data points
 - Applications: word-sense disambiguation, sentiment analysis

[Mihalcea and Radev, 2011]

Graph Neural Networks: Basic Model

 Key idea: Generate node embeddings based on local neighborhoods.

Graph Neural Networks: Foundations

• Learning node embeddings: A graph filter adjacency matrix

Learning graph-level embeddings:

New node embeddings

Graph Neural Networks: Popular Models

- Spectral-based Graph Filters
 - GCN (Kipf & Welling, ICLR 2017), Chebyshev-GNN (Defferrard et al. NIPS 2016)
- Spatial-based Graph Filters
 - MPNN (Gilmer et al. ICML 2017), GraphSage (Hamilton et al. NIPS 2017)
 - **GIN** (Xu et al. ICLR 2019)
- Attention-based Graph Filters
 - GAT (Velickovic et al. ICLR 2018)
- Recurrent-based Graph Filters
 - GGNN (Li et al. ICLR 2016)

Overview of GNN Model

1) Define a neighborhood aggregation function

2) Define a loss function on the embeddings, $L(z_v)$

Overview of GNN Model

Overview of GNN Model

DLG4NLP: A Roadmap

Outline

DLG4NLP Introduction

- Why Graphs for NLP?
- Conventional ML for NLP
- Deep Learning on Graphs: Foundations and Models

DLG4NLP

Foundations

- Graph Construction for NLP
- Graph Representation Learning for NLP
- Graph Encoder-Decoder Models for NLP

DLG4NLP Applications

- Natural Question Generation
- Summarization

DLG4NLP Foundations

Graph Construction for NLP

Why Graph Construction for NLP?

- Representation power: graph > sequence > bag
- Different NLP tasks require different aspects of text, e.g., syntax, semantics.
- Different graphs capture different aspects of the text
- Two categories: static vs dynamic graph construction
- Goal: good downstream task performance

Static Graph Construction

- Problem setting:
 - Input: raw text (e.g., sentence, paragraph, document, corpus)
 - Output: graph
- Conducted during preprocessing by augmenting text with domain knowledge

Static Graph Construction: Dependency Graph

Dependency parsing

Text input: are there ada jobs outside austin

Add additional sequential edges to

- reserve sequential information in raw text
- connect multiple dependency graphs in a paragraph

Static Graph Construction: Constituency Graph

Text input: are there ada jobs outside austin

Static Graph Construction: AMR Graph

Text input: Paul's description of himself: a fighter

Static Graph Construction: IE Graph

Text input: Paul, a renowned computer scientist, grew up in Seattle. He attended Lakeside School.

Static Graph Construction: Co-occurrence Graph

Text input: To be, or not to be: ...

Static Graph Construction: Application-driven Graph

Question: Who is the director of the 2003 film which has scenes

Static Graph Construction: Summary

Widely used in various NLP applications such as NLG, MRC, semantic parsing, etc.

Dynamic Graph Construction

- Problem setting:
 - Input: raw text (e.g., sentence, paragraph, document, corpus)
 - Output: graph
- Graph structure (adjacency matrix) learning on the fly, joint with graph representation learning

Dynamic Graph Construction: Overview

Combining intrinsic and implicit graph structures

Dynamic Graph Construction Outline

Graph Similarity Metric Learning Techniques

- Graph structure learning as similarity metric learning (in the node embedding space)
- Enabling inductive learning
- Various metric functions

Node Embedding Based Similarity Metric Learning

- Learning a weighted adjacency matrix by computing the pair-wise node similarity in the embedding space
- Common metrics functions
 - Attention-based similarity metric functions
 - Cosine-based similarity metric functions

Attention-based Similarity Metric Functions

Variant 1)

Variant 2)

$$S_{i,j} = \text{ReLU}(\mathbf{W}\mathbf{v}_i)^T \text{ReLU}(\mathbf{W}\mathbf{v}_j)$$

Learnable weight matrix

documents)

Cosine-based Similarity Metric Functions

$$S_{i,j}^p = \cos(\mathbf{w}_p) \odot \mathbf{v}_i, \mathbf{w}_p \odot \mathbf{v}_j)$$
Learnable weight vector

$$S_{i,j} = rac{1}{m} \sum_{p=1}^{m} S_{ij}^{p}$$
 Multi-head similarity scores

words, sentences, documents)

Fully-connected weighted graph

Structure-aware Similarity Metric Learning

- Learning a weighted adjacency matrix by computing the pair-wise node similarity in the embedding space
- Considering existing edge information of the intrinsic graph in addition to the node information

Attention-based Similarity Metric Functions

Variant 1)

$$S_{i,j}^l = \operatorname{softmax}(\mathbf{u}^T \operatorname{tanh}(\mathbf{W}[\mathbf{h}_i^l, \mathbf{h}_j^l, \mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{i,j}]))$$

documents)

Edge embeddings

Variant 2)

$$S_{i,j} = \frac{\text{ReLU}(\mathbf{W}^{Q}\mathbf{v}_{i})^{T}(\text{ReLU}(\mathbf{W}^{K}\mathbf{v}_{i}) + \text{ReLU}(\mathbf{W}^{R}\mathbf{e}_{i,j}))}{\sqrt{d}}$$

weighted graph

Graph Sparsification Techniques

- Similarity metric functions learn a fully-connected graph
- Fully-connected graph is computationally expensive and might introduce noise
- Enforcing sparsity to the learned graph structure
- Various techniques

Common Graph Sparsification Options

Option 1) KNN-style Sparsification

$$\mathbf{A}_{i,:} = \operatorname{topk}(\mathbf{S}_{i,:})$$

Option 2) epsilon-neighborhood Sparsification

$$A_{i,j} = \begin{cases} S_{i,j} & S_{i,j} > \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

Option 3) graph Regularization

$$\frac{1}{n^2}||A||_F^2$$

Combining Intrinsic and Implicit Graph Structures

- Intrinsic graph typically still carries rich and useful information
- Learned implicit graph is potentially a "shift" (e.g., substructures) from the intrinsic graph structure

$$\widetilde{A} = \lambda L^{(0)} + (1 - \lambda)f(A)$$

Normalized graph Laplacian

f(A) can be arbitrary operation, e.g., graph Laplacian, row-normalization

Learning Paradigms: Joint Learning

Liu et al. "Retrieval-Augmented Generation for Code Summarization via Hybrid GNN". ICLR 2021.

Chen at al. "GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension". IJCAI 2020.

Chen et al. "Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation". ICLR 2020.

Liu et al. "Contextualized Non-local Neural Networks for Sequence Learning". AAAI 2019.

Learning Paradigms: Adaptive Learning

Repeat for fixed num. of stacked GNN layers

Learning Paradigms: Iterative Learning

Repeat until condition satisfied

Dynamic Graph Construction Summary

Static vs. Dynamic Graph Construction

New topic in DLG4NLP!

Static graph construction	Dynamic graph construction	
Pros	Pros	
prior knowledge	no domain expertise	
	joint graph structure & representation learning	
Cons	Cons	
extensive domain expertise	scalability	
error-prone (e.g., noisy, incomplete)sub-optimal	explainability	
disjoint graph structure & representation learningerror accumulation		

Static vs. Dynamic Graph Construction (cont)

When to use static graph construction

Domain knowledge which fits the task and can be presented as a graph When to use dynamic graph construction

- Lack of domain knowledge which fits the task or can be presented as a graph
- Domain knowledge is incomplete or might contain noise
- To learn implicit graph which augments the static graph

Graph Representation Learning for NLP

GNNs for Graph Representation Learning

Homogeneous vs Multi-relational vs Heterogeneous Graphs

Graph types	Homogeneous	Multi-relational	Heterogeneous
# of node types	1	1	> 1
# of edge types	1	> 1	>= 1

Which GNNs to Use Given a Graph?

Homogeneous GNNs for NLP

- When to use homogeneous GNNs?
- Homogeneous GNNs
 - GCN
 - GAT
 - GraphSAGE
 - GGNN
 - ...

Non-homogeneous to Homogeneous Conversion via Levi Graph

Levi graph: edges as new nodes

Graph4NLP

How to Handle Edge Direction Information?

- Edge direction is important (think about BiLSTM, BERT)
- Common strategies for handling directed graphs
 - a) Message passing only along directed edges (e.g., GAT, GGNN)
 - b) Regarding edge directions as edge types (i.e., adding "reverse" edges)
 - c) Bidirectional GNNs

Edge Directions as Edge Types

 Regarding edge directions as edge types, resulting in a multirelational graph

$$dir_{i,j} = \begin{cases} default, & e_{i,j} \text{ is originally existing in the graph} \\ inverse, & e_{i,j} \text{ is the inverse edge} \\ self, & i = j \end{cases}$$

Then we can apply multi-relational GNNs

Bidirectional GNNs for Directed Graphs

Bi-Sep GNNs formulation:

Run multi-hop backward/forward GNN on the graph

$$\mathbf{h}_{i,\dashv}^k = \mathit{GNN}(\mathbf{h}_{i,\dashv}^{k-1}, \{\mathbf{h}_{j,\dashv}^{k-1} : \forall v_j \in \mathcal{N}_\dashv(v_i)\})$$

$$\mathbf{h}_{i,\vdash}^k = \mathit{GNN}(\mathbf{h}_{i,\vdash}^{k-1}, \{\mathbf{h}_{j,\vdash}^{k-1} : \forall v_j \in \mathcal{N}_{\vdash}(v_i)\})$$

Concatenate backward/forward node embeddings at last hop

$$\mathbf{h}_i^K = \mathbf{h}_{i,\dashv}^K || \mathbf{h}_{i,\vdash}^K ||$$

Bidirectional GNNs for Directed Graphs (cont)

Bi-Fuse GNNs formulation:

Run one-hop backward/forward node aggregation

$$\mathbf{h}_{\mathcal{N}_{\dashv}(v_i)}^k = AGG(\mathbf{h}_i^{k-1}, \{\mathbf{h}_j^{k-1} : \forall v_j \in \mathcal{N}_{\dashv}(v_i)\})$$

$$\mathbf{h}_{\mathcal{N}_{\vdash}(v_i)}^k = AGG(\mathbf{h}_i^{k-1}, \{\mathbf{h}_j^{k-1} : \forall v_j \in \mathcal{N}_{\vdash}(v_i)\})$$

Fuse backward/forward aggregation vectors at each hop

$$\mathbf{h}_{\mathcal{N}(v_i)}^k = Fuse(\mathbf{h}_{\mathcal{N}_{\dashv}(v_i)}^k, \mathbf{h}_{\mathcal{N}_{\vdash}(v_i)}^k)$$

Update node embeddings with fused aggregation vectors at each hop

$$\mathbf{h}_i^k = \sigma(\mathbf{h}_i^{k-1}, \mathbf{h}_{\mathcal{N}(v_i)}^k)$$

Multi-relational GNNs for NLP

- When to use multi-relational GNNs?
- Multi-relational GNNs
 - a) Including relation-specific transformation parameters in GNN
 - b) Including edge embeddings in GNN
 - c) Multi-relational Graph Transformers

R-GNN: Overview

$$\mathbf{h}_{i}^{k} = \sigma(\mathbf{h}_{i}^{k-1}, \sum_{v_{j} \in \mathcal{N}(v_{i})} AGG(\mathbf{h}_{j}^{k-1}, \theta^{k}))$$

GNN

1) relation-specific transformation, e.g., node feature transformation, attention weight ...

R-GNN

$$\mathbf{h}_{i}^{k} = \sigma(\mathbf{h}_{i}^{k-1}, \sum_{r \in \mathcal{E}} \sum_{v_{j} \in \mathcal{N}_{r}(v_{i})} AGG(\mathbf{h}_{j}^{k-1}, \theta_{r}^{k}))$$

2) aggregation per relation-specific subgraph

R-GNN Variant: R-GCN

Relation-specific node feature transformation during neighborhood aggregation

$$\mathbf{h}_{i}^{k} = \sigma(\sum_{r \in \mathcal{E}} \sum_{v_{j} \in \mathcal{N}_{r}(v_{i})} \frac{1}{c_{i,r}} \mathbf{W}_{r}^{k} \mathbf{h}_{j}^{k-1} + \mathbf{W}_{0}^{k} \mathbf{h}_{i}^{k-1}), \quad c_{i,r} = |\mathcal{N}_{r}(v_{i})|$$

Relation-specific d x d learnable weight matrix

R-GNN: Avoiding Over-parameterization

Learning d x d transformation weight matrix for each relation is expensive! O(Rd^2) parameters every GNN layer where R is the num of relation types How to avoid over-parameterization?

Option 1) basis decomposition - linear hypothesis

$$\theta_r^k = \sum_{b=1}^B a_{rb}^k \mathbf{V}_b^k, \quad \mathbf{V}_b^{(k)} \in \mathbb{R}^{d \times d}$$
 O(RB + Bd^2) parameters

Option 2) block-diagonal decomposition - sparsity hypothesis

$$\theta^k_r = \bigoplus_{b=1}^B \mathbf{Q}^k_{br} = diag(\mathbf{Q}^k_{1r}, \mathbf{Q}^k_{2r}, ..., \mathbf{Q}^k_{Br}), \quad \mathbf{Q}^{(k)}_{br} \in \mathbb{R}^{d/B \times d/B} \quad \text{O(Rd^2/B) parameters}$$
 Submatrices

Including Edge Embeddings in GNNs

Variant 1) Include edge embeddings in message passing

$$\mathbf{h}_i^k = \sigma(\mathbf{h}_i^{k-1}, \sum_{v_j \in \mathcal{N}(v_i)} AGG(\mathbf{h}_j^{k-1}, \underbrace{\mathbf{e}_{i,j}}, \theta^k))$$
 Edge embeddings

Variant 2) Update edge embedding in message passing

$$\mathbf{h}_i^k = \sigma(\mathbf{h}_i^{k-1}, \sum_{v_j \in \mathcal{N}(v_i)} AGG(\mathbf{h}_j^{k-1}, \mathbf{e}_{i,j}^{k-1}, \theta^k)), \quad \mathbf{e}_{i,j}^k = \mathit{f}(\mathbf{e}_{i,j}^{k-1}, \theta^k))$$
 Update edge embeddings

Multi-relational Graph Transformers

- Transformers as a special class of GNNs which
 - jointly learn and encode a fully-connected graph via self-attention
 - share many similarities with GAT
 - fail to effectively handle arbitrary graph-structured data
 - e.g., position embeddings for sequential data, removing position embeddings for set
- Multi-relational graph transformers
 - employed with structure-aware self-attention
 - respect various relation types

R-GAT based Graph Transformers

GAT-like masked attention

$$\mathbf{z}_{i}^{r,k} = \sum_{v_{j} \in \mathcal{N}_{r}(v_{i})} \alpha_{i,j}^{k} \mathbf{W}_{V}^{k} \mathbf{h}_{j}^{k-1}, r \in \mathcal{E}$$

$$\mathbf{h}_{i}^{k} = \text{FFN}^{k} (\mathbf{W}_{O}^{k}[\mathbf{z}_{i}^{R_{1},k}, ..., \mathbf{z}_{i}^{R_{m},k}])$$

Relation-specific learnable weight matrix

Structure-aware Self-attention based Graph Transformers

$$\mathbf{h}_{i}^{k} = \sum_{j} \alpha_{i,j}^{k} (\mathbf{W}_{V}^{k} \mathbf{h}_{j}^{k-1} + \mathbf{W}_{F}^{k} \mathbf{e}_{i,j})$$

$$\alpha_{i,j}^{k} = softmax(u_{i,j}^{k})$$

$$u_{i,j}^{k} = \frac{(\mathbf{W}_{Q}^{k} \mathbf{h}_{i}^{k-1})^{T} (\mathbf{W}_{K}^{k} \mathbf{h}_{j}^{k-1} + \mathbf{W}_{R}^{k} \mathbf{e}_{i,j})}{\sqrt{d}}$$

$$\mathbf{h}_{i}^{k} = \sum_{j} \alpha_{i,j}^{k} (\mathbf{W}_{V}^{k} \mathbf{h}_{j}^{k-1} + \mathbf{W}_{F}^{k} \mathbf{e}_{i,j})$$

$$\mathbf{h}_{i}^{k} = softmax(u_{i,j}^{k})$$

$$\mathbf{h}_{i}^{k} = softmax(u_{i,j}^{k})$$

$$\mathbf{h}_{i}^{k} = softmax(u_{i,j}^{k})$$

$$\mathbf{h}_{i}^{k} = \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k-1} + \mathbf{h}_{i}^{k} \mathbf{h}_{j}^{k-1} + \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k-1} + \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k-1} + \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k-1} + \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k-1} + \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k} \mathbf{h}_{i}^{k-1} + \mathbf{h}_{i}^{k} \mathbf$$

Hidden representations

Heterogeneous GNNs

- When to use Heterogeneous GNNs?
- Heterogeneous GNNs
 - a) Meta-path based Heterogeneous GNNs

Meta paths among author nodes

Meta-path based Heterogeneous GNN example: HAN

Step 1) type-specific node feature transformation

$$\mathbf{h}_i = \mathbf{W}_{ au(v_i)} \mathbf{v}_i$$
 Node-type specific learnable weight matrix

Step 2) node-level aggregation along each meta path

$$\mathbf{z}_{i,\Phi_k} = \sigma(\sum_{v_j \in \mathcal{N}_{\Phi_k}(v_i)} \alpha_{i,j}^{\Phi_k} \mathbf{h}_j)$$
 Aggregate over neighboring nodes in k-length meta path

Step 3) meta-path level aggregation

$$\mathbf{z}_i = \sum_{k=1}^p eta_k \mathbf{z}_{i,\Phi_k}$$
 Attention weights over meta paths

Graph Encoder-Decoder Models for NLP

Seq2Seq: Applications and Challenges

- Applications
 - Machine translation
 - Natural language generation
 - Logic form translation
 - Information extraction

- Challenges
 - Only applied to problems whose inputs are represented as sequences
 - Cannot handle more complex structure such as graphs
 - Converting graph inputs into sequences inputs lose information
 - Augmenting original sequence inputs with additional structural information enhances word sequence feature

Graph-to-Sequence Model

[1] Kun Xu*, Lingfei Wu*, Zhiguo Wang, Yansong Feng, Michael Witbrock, and Vadim Sheinin (Equally Contributed), "Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks", arXiv 2018.

[2] Yu Chen, Lingfei Wu** and Mohammed J. Zaki (**Corresponding Author), "Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation", ICLR'20.

Graph Encoding

- Graph embedding
 - Pooling based graph embedding (max, min and average pooling)
 - Node based graph embedding
 - □ Add one super node which is connected to all other nodes in the graph
 - ☐ The embedding of this super node is treated as graph embedding

Attention Based Sequence Decoding

Attention Based Sequence Decoding

Attention Based Sequence Decoding

Objective Function

$$\theta^* = \arg\max_{\theta} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \log p(y_t^n | y_{< t}^n, x^n)$$

When Shall We Use Graph2Seq?

 Case I: the inputs are naturally or best represented in graph

"Ryan's description of himself: a genius."

 Case II: Hybrid Graph with sequence and its hidden structural information

Augmenting "are there ada jobs outside Austin" with its dependency parsing tree results

Learning Structured Input-Output Translation

- To bridge the semantic gap between the human-readable words and machine-understandable logics.
- Semantic parsing is important for question answering, text understanding
- Automatically solving of MWP is a growing interest.

CD	Text Input: what jobs are there for web developer who know 'c++'?	
	Structured output: answer(A , (job (A) , title (A , W) , const (W , 'Web Developer') , language (A , C) , const (C , 'c++'))	
	0.5 of the cows are grazing grass . 0.25 of the cows are sleep-	
MWP	ing and 9 cows are drinking water from the pond. find the total number of cows.	

Graph and Tree Constructions

Figure 1: Dependency tree augmented text graph

Figure 2: Constituency tree augmented text graph

Figure 3: A sample tree output in our decoding process from expression "((0.5 * x) + (0.25 * x)) + 9.0 = x"

Tree Decoding

BFS-based tree decoder

Graph-to-Tree Model

^[1] Shucheng Li*, Lingfei Wu*, et al. "Graph-to-Tree Neural Networks for Learning Structured Input-Output Translation with Applications to Semantic Parsing and Math Word Problem", EMNLP 2020.

Separated Attention Based Tree Decoding

Outline

DLG4NLP Introduction

- Why Graphs for NLP?
- Conventional ML for NLP
- Deep Learning on Graphs: Foundations and Models

DLG4NLP

Foundations

- Graph Construction for NLP
- Graph Representation Learning for NLP
- Graph Encoder-Decoder Models for NLP

DLG4NLP Applications

- Natural Question Generation
- Summarization

DLG4NLP Applications

Application	Task	Evaluation	References
	Neural	100,000,00	Bastings et al. (2017); Beck et al. (2018b); Cai and Lam (2020c)
	Machine	BLEU	Guo et al. (2019c); Marcheggiani et al. (2018); Shaw et al. (2018)
	Translation		Song et al. (2019); Xiao et al. (2019); Xu et al. (2020c); Yin et al. (2020)
			Xu et al. (2020a); Wang et al. (2019e); Li et al. (2020b)
	Summarization	ROUGE	Fernandes et al. (2019); Wang et al. (2020a)
NLG			Cui et al. (2020b); Jia et al. (2020); Zhao et al. (2020a)
			Jin et al. (2020b); Yasunaga et al. (2017); LeClair et al. (2020)
	Structural-data to Text	BLEU, METEOR	Bai et al. (2020); Jin and Gildea (2020); Xu et al. (2018a)
			Beck et al. (2018b); Cai and Lam (2020b); Zhu et al. (2019c)
			Cai and Lam (2020c); Ribeiro et al. (2019b); Song et al. (2020)
			Wang et al. (2020f); Yao et al. (2018); Zhang et al. (2020d)
	Natural Question	BLEU, METEOR,	Chen et al. (2020g); Liu et al. (2019b); Pan et al. (2020)
	Generation	ROUGE	Wang et al. (2020d); Sachan et al. (2020); Su et al. (2020)
			De Cao et al. (2018); Cao et al. (2019b); Chen et al. (2020d)
	Machine Reading		Qiu et al. (2019); Schlichtkrull et al. (2018); Tang et al. (2020c)
	Comprehension	F1, Exact Match	Tu et al. (2019b); Song et al. (2018b)
			Fang et al. (2020b); Zheng and Kordjamshidi (2020)
MRC and QA	Knowledge Base		Feng et al. (2020b); Sorokin and Gurevych (2018b)
	Question Answering	F1, Accuracy	Santoro et al. (2017); Yasunaga et al. (2021)
	Open-domain	TE OLE	
	Question Answering	Hits@1, F1	Han et al. (2020); Sun et al. (2019b, 2018a)
	Community	-DCC D	II1 (2010) 2020)
	Question Answering	nDCG, Precision	Hu et al. (2019b, 2020b)
	Dialog State Tracking	Accuracy	Chen et al. (2018b, 2020a)
Dialog Contone	Dialog Response	BLEU, METEOR,	Hart of (2010d)
Dialog Systems	Generation	ROUGE	Hu et al. (2019d)
	Next Utterance Selection	Recall@K	Liu et al. (2021c)
Tout Cla	asi6 astism	Accuracy Accuracy, F1 Topic Coherence Score	Chen et al. (2020e); Defferrard et al. (2016); Henaff et al. (2015)
Text Cla	ssification		Huang et al. (2019); Hu et al. (2020c); Liu et al. (2020)
Text N	/Iatching		Chen et al. (2017c); Liu et al. (2019a)
Topic l	Modeling		Long et al. (2020); Yang et al. (2020); Zhou et al. (2020a); Zhu et al. (2018
			Zhang and Qian (2020); Pouran Ben Veyseh et al. (2020)
Continuent	Classification	A	Chen et al. (2020c); Tang et al. (2020a)
Sentiment	Classification	Accuracy, F1	Sun et al. (2019c); Wang et al. (2020b); Zhang et al. (2019a)
			Ghosal et al. (2020); Huang and Carley (2019)
	Knowledge		Malaviya et al. (2020); Nathani et al. (2019a); Teru et al. (2020)
	Graph		Bansal et al. (2019); Schlichtkrull et al. (2018); Shang et al. (2019)
Vacantadas Cusah	Completion	III. ON	Wang et al. (2019a,g); Zhang et al. (2020g)
Knowledge Graph	Knowledge	Hits@N	Cao et al. (2019c); Li et al. (2019); Sun et al. (2020a)
	Graph		Wang et al. (2018, 2020h); Ye et al. (2019)
	Alignment		Xu et al. (2019a); Wu et al. (2019a)
	Named Entity		Luo and Zhao (2020); Ding et al. (2019b); Gui et al. (2019)
	Recognition		Jin et al. (2019); Sui et al. (2019)
Information Extraction	D.L.: E.	Precision, Recall, F1	Qu et al. (2020); Zeng et al. (2020); Sahu et al. (2019)
	Relation Extraction		Guo et al. (2019b); Zhu et al. (2019a)
	Joint Learning Models	9	Fu et al. (2019); Luan et al. (2019); Sun et al. (2019a)
	Syntax-related		Do and Rehbein (2020); Ji et al. (2019); Yang and Deng (2020)
Parsing		Accuracy	Bai et al. (2020); Zhou et al. (2020b)
•	Semantics-related	30000000000000000000000000000000000000	Shao et al. (2020); Bogin et al. (2019a,b)
	Math Word		Li et al. (2020a); Lee et al. (2020); Wu et al. (2020b)
	Problem Solving		Zhang et al. (2020b); Ferreira and Freitas (2020)
D	Natural Language	¥2000000	
Reasoning	Inference	Accuracy	Kapanipathi et al. (2020); Wang et al. (2019f)
	Commonsense		Then at al. (2019a): Lin at al. (2010k -)
	Reasoning		Zhou et al. (2018a); Lin et al. (2019b,a)
		Precision, Recall,	Marcheggiani and Titov (2020); Xia et al. (2020); Zhang et al. (2020a)
Semantic R	ala I ahallina	i iccision, icccuii,	Li et al. (2018c); Marcheggiani and Titov (2017); Fei et al. (2020)

GNNs have been widely applied in various NLP tasks!

Wu, Chen et al, "Graph Neural Networks for Natural Language Processing: A Survey". arxiv.org/abs/2106.06090

Natural Question Generation

Natural Question Generation

- Input
 - A text passage $X^p = \{x_1^p, x_2^p, ..., x_N^p\}$
 - A target answer $X^a = \{x_1^a, x_2^a, ..., x_L^a\}$
- Output
 - A natural language question

$$\hat{Y} = \{y_1, y_2, ..., y_T\}$$

which maximizes the conditional likelihood

$$\hat{Y} = \arg\max_{Y} P(Y|X^p, X^a)$$

Two graph construction strategies:

- 1) Syntax-based static passage graph construction
- 2) Semantics-aware dynamic passage graph construction

Methods	BLEU-4	Methods	BLEU-4	
$G2S_{dyn}$ +BERT+RL	18.06	$G2S_{dyn}$ w/o feat	16.51	
$G2S_{sta}$ +BERT+RL	18.30	$G2S_{sta}$ w/o feat	16.65	
$G2S_{sta}$ +BERT-fixed+RL	18.20	$G2S_{dyn}$ w/o DAN	12.58	
$G2S_{dyn}$ +BERT	17.56	$G2S_{sta}$ w/o DAN	12.62	
$G2S_{sta}$ +BERT	18.02	$G2S_{sta}$ w/ DAN-word only	15.92	Bidirectional GNN
$G2S_{sta}$ +BERT-fixed	17.86	G2S _{sta} w/ DAN-contextual only	16.07	performs better
$G2S_{dyn}$ +RL	17.18	G2S _{sta} w/ GGNN-forward	16.53	·
$G2S_{sta}$ +RL	17.49	G2S _{sta} w/ GGNN-backward	16.75	
$G2S_{dyn}$	16.81	G2S _{sta} w/o BiGGNN, w/ Seq2Seq	16.14	Graph2Seq performs
$G2S_{sta}$	16.96	G2S _{sta} w/o BiGGNN, w/ GCN	14.47	better than Seq2Seq

Ablation study on the SQuAD split-2 test set.

Static graph construction performs slightly better

Summarization

Summarization

I just need the main ideas

- Input
 - A document, dialogue, code or multiple ones
- Output
 - A succinct sentence or paragraph

Methods	In-domain			Out-of-domain			Overall		
Wethods	BLEU-4	ROUGE-L	METEOR	BLEU-4	ROUGE-L	METEOR	BLEU-4	ROUGE-L	METEOR
TF-IDF	15.20	27.98	13.74	5.50	15.37	6.84	12.19	23.49	11.43
NNGen	15.97	28.14	13.82	5.74	16.33	7.18	12.76	23.93	11.58
CODE-NN	10.08	26.17	11.33	3.86	15.25	6.19	8.24	22.28	9.61
Hybrid-DRL	9.29	30.00	12.47	6.30	24.19	10.30	8.42	28.64	11.73
Transformer	12.91	28.04	13.83	5.75	18.62	9.89	10.69	24.65	12.02
Dual Model	11.49	29.20	13.24	5.25	21.31	9.14	9.61	26.40	11.87
Rencos	14.80	31.41	14.64	7.54	23.12	10.35	12.59	28.45	13.21
GCN2Seq	9.79	26.59	11.65	4.06	18.96	7.76	7.91	23.67	10.23
GAT2Seq	10.52	26.17	11.88	3.80	16.94	6.73	8.29	22.63	10.00
SeqGNN	10.51	29.84	13.14	4.94	20.80	9.50	8.87	26.34	11.93
HGNN w/o augment & static	11.75	29.59	13.86	5.57	22.14	9.41	9.98	26.94	12.05
HGNN w/o augment & dynamic	11.85	29.51	13.54	5.45	21.89	9.59	9.93	26.80	12.21
HGNN w/o augment	12.33	29.99	13.78	5.45	22.07	9.46	10.26	27.17	12.32
HGNN w/o static	15.93	33.67	15.67	7.72	24.69	10.63	13.44	30.47	13.98
HGNN w/o dynamic	15.77	33.84	15.67	7.64	24.72	10.73	13.31	30.59	14.01
HGNN	16.72	34.29	16.25	7.85	24.74	11.05	14.01	30.89	14.50

Automatic evaluation results (in %) on the CCSD test set.

Combining static + dynamic graphs performs better

Outline

DLG4NLP Introduction

- Why Graphs for NLP?
- Conventional ML for NLP
- Deep Learning on Graphs: Foundations and Models

DLG4NLP Foundations

- Graph Construction for NLP
- Graph Representation Learning for NLP
- Graph Encoder-Decoder Models for NLP

DLG4NLP Applications

- Natural Question Generation
- Summarization

Graph4NLP: A Library for Deep Learning on Graphs for NLP

Overall Architecture of Graph4NLP Library

DGL: https://github.com/divelab/DIG, Huggingface: https://github.com/dmlc/dgl, DIG: https://github.com/huggingface/transformers

Dive Into Graph4NLP Library

Computation Flow of Graph4NLP

Performance of Built-in NLP Tasks

Task	Dataset	GNN Model	Graph construction	Evaluation	Performance
Text classification	TRECT CAirline CNSST	GAT	Dependency	Accuracy	0.948 0.769 0.538
Semantic Parsing	JOBS	SAGE	Constituency	Execution accuracy	0.936
Question generation	SQuAD	GGNN	Dependency	BLEU-4	0.15175
Machine translation	IWSLT14	GCN	Dynamic	BLEU-4	0.3212
Summarization	CNN(30k)	GCN	Dependency	ROUGE-1	26.4
Knowledge graph completion	Kinship	GCN	Dependency	MRR	82.4
Math word problem	MAWPS MATHQA	SAGE	Dynamic	Solution accuracy Exact match	76.4 61.07

- 1) git clone https://github.com/graph4ai/graph4nlp_demo
- 2) follow Get Started instructions in README


```
def forward(self, graph_list, tgt=None, require_loss=True):
    # build graph topology
    batch_gd = self.graph_topology(graph_list)
    # run GNN encoder
    self.gnn(batch_gd)
                                                                Model arch
    # run graph classifier
    self.clf(batch_gd)
    logits = batch_gd.graph_attributes['logits']
    if require_loss:
        loss = self.loss(logits, tgt)
        return logits, loss
    else:
        return logits
```



```
Graph construction API, various built-in options, can be customized
```


GNN API, various built-in options, can be customized

Prediction API, various built-in options, can be customized

Dataset API, various built-in options, can be customized

```
dataset = TrecDataset(root_dir=self.config.get('root_dir', self.config['root_data_dir']),
                      pretrained_word_emb_name=self.config.get('pretrained_word_emb_name', "840B"),
                      merge_strategy=merge_strategy,
                      seed=self.config['seed'],
                      thread_number=4,
                      port=9000,
                      timeout=15000.
                      word_emb_size=300,
                      graph_type=graph_type,
                      topology_builder=topology_builder,
                      topology subdir=topology subdir,
                      dynamic_graph_type=self.config['graph_type'] if \
                          self.config['graph_type'] in ('node_emb', 'node_emb_refined') else None,
                      dynamic_init_topology_builder=dynamic_init_topology_builder,
                      dynamic_init_topology_aux_args={'dummy_param': 0})
```

Outline

DLG4NLP Introduction

- Why Graphs for NLP?
- Conventional ML for NLP
- Deep Learning on Graphs: Foundations and Models

DLG4NLP

Foundations

- Graph Construction for NLP
- Graph Representation Learning for NLP
- Graph Encoder-Decoder Models for NLP

DLG4NLP Applications

- Natural Question Generation
- Summarization

DLG4NLP: Future Directions and Conclusions

Future Directions

The Rise of GNN + NLP

#ICLR2020 submissions on graph neural networks, NLP and robustness have the greatest growth. @iclr_conf @openreviewnet

[Vashishth et al. EMNLP'19 Tutorial]

- Graph Construction for NLP
 - Dynamic graph construction are largely underexplored!
 - How to effectively combine advantages of static graph and dynamic graph?
 - How to construct heterogeneous dynamic graph?
 - How to make dynamic graph construction itself scalable?

Future Directions

- Scaling GNNs to Large Graphs
 - Most existing multi-relational or heterogeneous GNNs will have scalability issues when applied to large graphs in NLP such as KGs (> 1m)
- GNNs + Transformer in NLP
 - How to effectively combine the advantages of GNNs and Transformer?
 - Is graph transformer the best way to utilize?
- Pretraining GNNs for NLP
 - Information Retrieval/ Search

Future Directions

- Graph-to-graph Learning in NLP
 - How to effectively develop Graph-to-Graph models for solving graph transformation problem in NLP (i.e. information extraction)?
- Joint Text and KG Reasoning in NLP
 - Joint text and KG reasoning is less explored although GNNs for multi-hop reasoning gains popularity
- Incorporate Source and Context into Knowledge Graph Construction and Verification

Conclusions

- Deep Learning on Graphs for NLP is a fast-growing area today!
- Since graph can naturally encode complex information, it could bridge a gap by combining both empirical domain knowledges and the power of deep learning.
- For a NLP task,
 - how to convert text sequence into the best graph (directed, multi-relation, heterogeneous)
 - how to determine proper graph representation learning technique?
- Our Graph4NLP library aims to make easy use of GNNs for NLP:
 - Code: https://github.com/graph4ai/graph4nlp
 - Demo: https://github.com/graph4ai/graph4nlp_demo
 - Github literature list: https://github.com/graph4ai/graph4nlp_literature
- GNN4NLP survey: https://arxiv.org/pdf/2106.06090