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Computational Identification of Inhibitors of Protein-Protein Interactions
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Abstract: The ability to control protein-protein interactions (PPIs) for therapeutic purposes is attractive since many
processes in cells involve such interactions. Recent successes in the discovery of small molecules that target protein-
protein interactions for drug development have shown that targeting these interactions is indeed feasible. In the present
review the use of computer-aided drug design (CADD) via database screening or docking algorithms for identifying
inhibitors of protein-protein interactions is introduced. The principles of database screening and a practical protocol for
targeting PPIs are described. The recent applications of these approaches to different systems involving protein-protein
interactions, including BCL-2, S100B, ERK and p56lck, are presented and provide valuable examples of inhibitor

discovery and design.
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INTRODUCTION

Protein-protein interactions (PPIs) regulate numerous
cellular processes including signaling pathways, morpho-
genic pathways, and complex molecular machines, among
others [1-4]. Design of inhibitors for PPls is important for
the control and modification of these processes and can be
valuable research tools as well as potential therapeutic agents
[5]. Indeed the use of chemical agents to block PPIs
comprise a large part of the recently introduced field of
chemical biology [6, 7].

Low-molecular weight chemical compounds bound to a
protein can prevent the formation of protein dimers which
are often the active form [8, 9]. Some proteins function in
trimeric or higher multimeric states which can be prevented
by inhibitors which may bind to the dimer to block the
association of the higher order structure [10]. Some
inhibitors can also favor dimer dissociation [11]. More
significant with respect to chemical biology are protein
heterodimers and higher order structures. Blocking the
formation of such multimeric systems may be used to alter a
variety of vital processes including cellular signaling, gene
regulation, immunity and metabolism among others.
Blocking PPIs is also useful in the field of chemical genetics
[12-14] where small molecules are used to directly change
the way proteins work in real time, rather than indirectly by
manipulating their structure via genetic manipulation.
Accordingly, it is desirable to have approaches to rapidly and
systematically obtain inhibitors of PPIs that have both
adequate binding affinity and specificity. Towards this goal,
computational chemistry methods hold great promise; the
remainder of this review will give an overview of the
application of computational (aka. in silico or virtual)
methods to PPI inhibitor identification, with emphasis on
low-molecular weight organic compounds as the inhibitors.
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Computer-aided drug design (CADD) refers to the
application of a variety of computational methods to drug
discovery and design. CADD may be divided into two
categories. One category is target- or structure-based drug
design (SBDD) [15] which use 3D structural and relevant
biological information of a target protein to identify
chemical entities with a high probability of binding to the
target protein. The identified compounds, often referred to as
hits, are then subjected to experimental tests to identify
active or lead compounds. These methods include database
screening based docking or [16, 17] molecular modeling by
means of either molecular mechanical (MM) and quantum
mechanical (QM) approaches [18, 19]. Alternatively, for a
given binding site, novel ligands can be built from fragments
that complement the geometric and chemical charateristics of
the binding site. This approach is normally referred to as de
novo ligand design [20]. Ligands designed by de novo
approaches are usually validated by computational methods
like docking at a high level of accuracy followed by
synthesis and biological assay. However, the requirement for
synthesis at the initial stage of the discovery process
typically make de novo methods less attractive than database
screening or docking methods that employ databases of
available compounds.

The second category is ligand-based design methods [21]
which use information about known active ligands as the
basis for the design of novel lead compounds. These
methods include combinatorial library techniques [22-24]
which generate hits from chemical building blocks often
starting from known peptidic inhibitors, quantitative
structure activity relationship (QSAR) [24-26] analyses,
which use statistical techniques to derive empirical activity
formulas expressed in terms of compound functional groups
and physiochemical properties, and pharmacophore
approaches [27-30], which match activity with the type and
spatial relationship of functional groups in known active
compounds. Usually, a de novo design process also contains
a pharmacophore step, i.e. adding functional groups to
provide a given biological activity so that it combines both
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structure-based and ligand-based designs [31, 32]. While
ligand-based approaches have and continue to be of great
utility, they require a training set of known compounds for
which experimental activity is available. However, in the
case of most PPIs of interest such data is not available while
structural data of the proteins is accessible. Accordingly,
SBDD typically has greater utility for the identification of
lead compounds with the potential to be inhibitors of PPIs.

SBDD computational methods aim at i) identifying low-
molecular weight compounds that bind to the protein (i.e.
lead compound identification [33]) and ii) optimization of
the lead compounds to improve their affinity, specificity, and
ADME (Absorption, Distribution, Metabolism, and Excre-
tion) properties as required to produce viable drug
candidates. This review will focus on lead compound
identification as performed using virtual database screening,
also known virtual or in silico high throughput screening. In
virtual database screening a million or more molecules,
which are often commercially available, are computational
“posed” into a putative binding site on the protein-protein
interface and assigned a score (see details below), with the
top scoring compounds ultimately selected for experimental
testing. The power of virtual screening is emphasized in a
study identifying inhibitors of tyrosine phosphatase 1B,
where the hit rate was improved by 1,700-fold over the use
of experimental high throughput screening (HTS) alone [34].
A number of recent reviews address the various docking
methodologies and their applications [17, 21, 35-62].

Concerning PPIs several reviews covering inhibitors for
particular systems have been presented. For example, Grb2
and Grk family adaptors which are mainly composed of Src
homology 2 (SH2) and Src homology 3 (SH3) domains serve
as docking sites for signaling proteins including various
receptors, cytoplasmic kinases and GTPase regulators [63].
Cyclin-dependent protein kinases (CDKSs) are another class
which function as essential regulators of cell growth and
differentiation related to the treatments for cancer, neurolo-
gical disorders, and infectious diseases [64]. Other examples
include the interaction of Abeta with acetylcholinesterase
(AChE), which is one of the several proteins associated with
amyloid plaque deposits [65] and the possible effects of
HIV-1 protease inhibitors against the severe acute respiratory
syndrome (SARS) coronavirus (SARS-CoV) protease [66],
Hsp90 and p23 [67].

In addition, more recent work on PPIs using docking
methods include the identification of low-molecular weight
inhibitors of the tumor necrosis factor-alpha (TNFa) [10], the
calcium-dependent S100B-p53 tumor suppressor interaction
[68, 69] and the SH2 domain of p56Ick [16, 25]. Alternative
screening methods based on similarity analysis (see below)
have been used for the validation of compounds inhibiting
the SH2 domain of p56Ick from peptide binding as true leads
for optimization [16, 25]. These and the applications listed
above indicate that database screening methods are feasible
for identification of the inhibitors of PPlIs.

Identification of proteins that are appropriate for
inhibition (e.g. “druggable”) is one of the key steps in
ensuring success for PPl inhibitor development. PPIs often
involve large surface areas on the interacting proteins. These
surfaces are often relatively flat and, in many cases, the
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binding sites are exposed only after conformational changes
associated with multimer formation [70-73]. Developments
in computational and experimental methods have allowed
the identification of key residues involved in PPIs, with these
residues often grouped together is small areas called hot
spots [74, 75]. The presence of well-defined grooves or
cavities in or near the hot spots makes these sites good
putative binding sites for drug development. Careful evalua-
tion of these hot spots, often based on sequence homology,
may also allow for control over the specificity of the
inhibitor-protein interactions [76]. Since many proteins
involved in PPIs have different binding sites in the protein-
protein interface which are used to bind to different
substrates, adequate specificity of identified inhibitors is
obviously essential for their use as both research tools to
elucidate, for example, signal transduction pathways, and as
therapeutic agents.

The remainder of this review is organized as follows. A
general overview of virtual database screening relevant to
PPIs is given followed by details of selected docking
algorithms. This is followed by a discussion of methodo-
logical details associated with docking including binding site
selection and preparation and considerations related to
conformational sampling. A section is then dedicated to an
overview of scoring functions used in virtual screening,
following with information on in silico databases available
for screening, along with approaches required for the
preparation of such databases and the utility of chemical
fingerprint based approaches for database searching. Finally,
several examples of systems involving PPIs that have been
subjected to virtual screening, including Bcl-2, p56lck,
S100B and ERK, are presented.

VIRTUAL DATABASE SCREENING

An overview of the virtual database screening process is
shown in Fig. (1). To initiate the screening project the 3D
structure of the target protein from either X-ray
crystallography or NMR spectroscopy is required. If there is
no experimental structure available, homologous proteins
can be found based on sequence alignment following which
a structure may be determined via homology modeling [77-
79]. Once a 3D structure is available it is necessary to
identify an appropriate binding site. This may be performed
in a purely computational fashion, though it is preferable to
use as much experimental information as possible to identify
the putative binding pocket (see below). Once the structure
and binding site are known, a docking procedure is applied
to identify compounds with a high probability of binding
based on the applied posing approach and the scoring
function. In our laboratory, screening of large in silico
databases (i.e. hundred of thousands of compounds or more)
is divided into two steps followed by additional analysis (i.e.
post-dock processing). Preliminary or primary docking, from
which 20,000 to 50,000 top scoring compounds are selected,
is designed to run quickly at the expense of accuracy.
Selected compounds are then subjected to secondary docking
which uses a higher level of accuracy. In both the primary
and secondary docking the ligand is treated as flexible, with
the additional level of accuracy in secondary docking
obtained via additional structural relaxation. Typically the
protein structure is kept rigid due to computational
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Fig. (1). A flowchart of the virtual database screening protocol.

considerations, though the use of multiple conformationsof
the protein in secondary docking can partially account for
flexibility. For the secondary docking the final compounds
are selected for experimental assay, often following some
additional selection criteria. The experimental step will
identify those selected compounds that have the desired
biological activity; these represent the lead compounds
obtained from the screening process. The true utility of lead
compounds for lead optimization studies may then be
determined by obtaining structurally similar compounds via
similarity screening where, in the case of a good lead
compound suitable for additional optimization, the majority
of structurally similar compounds will be active [25].

A wide range of experimental approaches may be used to
evaluate compounds selected from the virtual screening (see
Applications section, below). The most common quantities
measured in experiments are 1Csy, ECsp, and K. ICs
represents the concentration of an inhibitor that is required
for 50% inhibition of an enzyme in vitro. ECs, is the
effective concentration at which 50% of the maximal
biological response is attained. K; is the inhibition constant.
Any of these values are useful for experimentally ranking
ligands, with the value used based on the type of assay being
performed.

In general, it is necessary to select an experimental
approach that allows for a minimum of 50 compounds from
the virtual screen to be assayed. In our experience, appro-
ximately 5% of selected compounds show activity in the
micromolar range, such that assaying 50 compounds will
yield 2-3 hits. This “limited” success rate is due to limita-

tions in the screening process, including limitations in the
ability to sample all accessible conformations of the inhibi-
tors and the binding pocket and due to limitations in the
scoring function. Accordingly, virtual screening is designed
to limit the number of false negatives (i.e. active compounds
that are not selected) by selecting a number of false positives
(i.e. inactive compounds that are selected) leading to
identification of an adequate number of true positives.

DOCKING

Docking is the general term used for the procedure to
generate reasonable bound conformations (i.e. posing) and
then assigning a score for the two participants: the target
protein and the ligand. Scoring functions, defined according
to geometric, chemical, energetic, or any other empirical
criteria, are employed to direct the posing process as well as
to rank the binding pose of each ligand being tested; these
will be discussed below. A docking program is a
combination of subroutines for conformational searching and
binding pose ranking. In the 1980s, docking became
computationally practical although the suggestion of using
docking was proposed earlier. The first widely used docking
program is DOCK developed by Kuntz in 1982 [80, 81] and
is the program used in our laboratory for the majority of
screening projects. DOCK initially adopted a geometric
scoring criteria and later was extended to energy based
scoring functions for ranking the binding poses. As stated
above, DOCK as well as most docking programs keeps the
protein structure rigid during the docking process. In DOCK
ligand flexibility is introduced via an anchor-based approach
[81]. In this approach one or more anchors, typically ring
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systems, for the ligand being docked are selected. These
anchors are then directed into the putative binding site by
overlaying them onto a set of spheres that define a negative
image of the receptor binding site (i.e. a set of spheres that
fill the binding pocket). Once an anchor is placed, the
remainder of the molecule is built in a layer by layer fashion,
where the new substituents associated with each layer are
rotated about the connecting bond to identify the lowest
conformation of the substituents in that layer prior to adding
the next layer. The process is continued until the entire
ligand is built. More rigorous sampling of possible ligand
conformations is performed by placing the anchor fragments
in multiple orientations prior to the build-up procedure, such
that a large number of copies of a given ligand are built,
from which the lowest energy ligand is selected. The buildup
procedure can be further enhanced by including additional
energy minimization of the ligand as the process proceeds.
Such additional minimization is performed in the secondary
docking approach used in our laboratory; however, this extra
minimization increases the computational demand by close
to a factor of 10. Once the ligand is built (i.e. posed) a final
score is assigned and the next ligand is built into the binding
site. It should be noted that the posed ligand can then be
rescored using other scoring functions; an approach referred
to as consensus scoring uses a combination of results from
different scoring functions to perform the final ranking of the
ligands [82]. Another relevant point is the inherent
parallizability of database screening. By simply splitting the
database across multiple computers each portion of the
database may be screened simultaneously, with the final
scores for all the ligands collected once all the databases
have been screened and the final ranking performed.

Beyond DOCK a wide variety of docking programs are
available that use a collection of posing methodologies and
scoring functions. For the sake of completeness following is
a list of most docking programs and algorithms presented
without evaluating their quality or efficiency. These include
3D-Dock Suite (FTDock [83], RPScore [84] and MultiDock
[85]), Affinity (Insight Il), AutoDock [86], BIGGER [87],
CDOCKER [88], ChemScore [89], ClusPro [90], COMBINE
[91], CONCOORD/DISCO [92], DOCK [81], DockVision
[93], DOT [94], ECEPP/3 [95], FDS [96], FlexX [97],
GAPDOCK [98], GasDock [99], GEMDOCK [100], Glide
[101, 102], GOLD [103], GRAMM [104], HADDOCK
[105], ICM-DISCO [106], ICM-Dock [107], IFREDA [108],
LibDock [109], LIGPLOT [110], LigandFit [111],
PatchDock and SymmDock [112], PMF_score [113,114],
PSI-DOCK [115], RDOCK [116], SITUS [117], Surflex
[118], TreeDock [119], and ZDOCK [120]. Although some
comparison studies have been performed on the more
commonly wused programs [121-124], it should be
emphasized that it is difficult to compare different docking
programs/algorithms due to the different approaches
generally being optimized for a particular purpose. However,
if used judiciously, most docking procedures can fulfill the
purpose of finding candidate lead compounds from an in
silico databases within acceptable time limits.

As stated above, one method to account for protein
flexibility in docking is via inclusion of multiple
conformations of the target protein in the process. Each
ligand is docked against each conformation with the best
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score for that ligand amongst the protein conformations used
for the overall ranking of that ligand. Alternate confor-
mations of a protein may be obtained from different crystal
structures, from various structures typically available from
an NMR structure determination or from a molecular
dynamics simulation performed with CHARMM [125] or
another of the available computational chemistry programs
[126]. Alternatively, some docking programs do explicitly
include protein flexibility, such as FlexX [127], although this
will significantly increase the computational requirements
for docking each ligand. Another way to account for protein
flexibility is soft-core potentials, which allow some overlap
of ligand and protein atoms by lowering the Lennard-Jones
repulsion between ligand and protein atoms [128]. In the end
all of the above methods only partially account for the target-
protein flexibility, a limitation whose impact must be
considered in all docking studies.

An important step in the development and acceptance of
any methodology, such as virtual docking, is a rigorous and
independent validation of the approach. Towards this goal
was the implementation of a community wide experiment,
the Critical Assessment of Predicted Interactions (CAPRI,
http://capri.ebi.ac.uk/) in 2000 [41, 129-133]. Motivation for
CAPRI is based on the Critical Assessment of Techniques
for Protein Structure Predication (CASP) [134, 135]. In
CAPRI it was shown that most known small molecule-
protein complexes can be reproduced by docking methods
although none of docking algorithms is able to predict all of
them correctly.

PROTEIN STRUCTURE CONSIDERATIONS

An essential component of any virtual database screening
project is an appropriate protein structure and a well-defined
binding pocket. Protein structures, which are experimentally
determined by NMR or X-ray diffraction, can be obtained
online at the protein data bank (PDB http://www.rcsb.org). If
the structure of a receptor is not available, homologous
protein with known 3D structures may be used to develop a
3D model of the target protein via a variety of modeling
approaches [77-79]. These homologous proteins are selected
based on sequence alignment by alignment tools including
BLAST [136-138], Clustalw [139, 140], MAP [141], and
SAM [142].

When using an experimental structure from X-ray
crystallography the position of the hydrogens are typically
not present or poorly defined. Therefore, the positions of the
hydrogen atoms should be optimized through computational
means. This may be performed using a variety of compu-
tational chemistry packages (e.g. AMBER [143], CHARMM
[125], GROMOS [144], Sybyl (Tripos Inc.), or Insight
(Accelrys). In the structures from NMR data, often 10 or
more structures are given, though in some cases a single
average structure is presented. While NMR structures have
well defined positions for the majority of hydrogens it is still
useful to minimize the position of the hydrogens, especially
in the case of averaged structures. Beyond hydrogens, it is
often useful to minimize the entire structure of the target
protein to remove bad contacts in the experimental
structures. Such minimizations are typically done in the
presence of harmonic restraints on the non-hydrogen atoms



Computational Identification of Inhibitors of Protein-Protein Interactions

to insure that the 3D structure does not significantly deviate
from the experimental structure.

An essential consideration when preparing a protein for
docking is the protonation state of ionizable residues on the
protein. While typical pK, values for the amino acids are
known, the actual protonation state of some amino acid
residues can change significantly based on their chemical
surroundings. When considering ionization states the most
important case is histidine, which can be in one of two
neutral states (i.e. the Nd1 or the Ne2 atom protonated) or in
the fully charged +1 state. Other residues that must be
considered are the acidic residues Asp and Glu as well as
cysteine, tyrosine, lysine and arginine, although these
residues will typically be in their standard ionization states
due to their pK, being relatively far from pH 7. However,
when any ionizable amino acid is located in the binding site
being targeted, possible alternate ionization states should be
considered. Online pK, prediction algorithms are available
(e.g. http://biophyscs.cs.vt.edu/H++/); however, their accuracy
is difficult to gauge.

BINDING SITE CONSIDERATIONS

Computational determination of putative binding pockets
typically requires determination of the protein surface
followed by identification of concave regions into which
ligands may potentially bind. The surface representation can
be the van der Waals (vdW) surface [145] which is defined
by a collection of points based on vdW radii of the receptor
atoms. The program MIDAS [146], which was recently
replaced by Chimera [147], creates the vdW surface around
each atom followed by removal of areas of overlap to create
a Corey-Pauling-Koltun (CPK) type model. The currently
used solvent-accessible surface by the DOCK program,
which can be generated by the program dms in the MIDAS
package, is defined by rolling a theoretical water ‘probe’
sphere around the vdW surface of the molecule and using the
contact and reentrant points to determine the surface. A
helpful algorithm for analytically calculating smooth three-
dimensional contour was proposed by Connolly [148, 149].
Therefore, the solvent-accessible surface generated by the
Connolly algorithm, referred to as a Connolly surface,
involves a network of convex, concave, and saddle shape
surfaces. In other words, it is comprised of spherical contact
faces, spherical reentrant faces and toric reentrant faces. A
coarse approximation of the Connolly surface is the Alpha
shape, which is made of a set of “alpha-exposed” points.
Each pair of “alpha-exposed” points forms a circle of radius
alpha, which contains no other points. All “alpha-exposed”
points define an enclosed region to represent the molecular
shape. Smaller radius alpha increases the resolution of the
region. The alpha shape is used for fast surface matching
because there are few points to consider. In addition, a
number of algorithms have been proposed to generate the
molecular surface using a fixed solvent probe radius or a
variable-radius solvent probe [150-160].

Based on a molecular surface, putative binding pockets
may be identified by a variety of algorithms. The Lenhoff
techniqgue computes a complementary surface for the
receptor to determine possible positions for locating the atom
centers of the ligand [161]. Kuntz and coworkers generate
clustered spheres using the program SPHGEN. Each sphere
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is related to a pair of points i and j that lie on the molecular
surface and is centered on the normal at point i. Therefore,
the cavities on the receptor can be represented by clusters of
overlapping spheres which are used to place the anchor used
in ligand placement described above.

While computational approaches alone can delineate
binding sites, ideally, such methods should be used in
conjunction with experimental data to select the final binding
pocket for virtual screening. In the case of systems where an
experimental structure of a ligand-protein complex is
available (e.g. inhibitors in enzyme active sites) the process
is trivial; however, for PPIs the binding site must be selected
from an extensive protein-protein binding interface. Useful
experimental data for this purpose often comes from
mutational studies. Mutation(s) may cause significant
changes in the affinity of PPIs and thus indicate important
residues. Examples of the utility of mutation data in defining
binding pockets are given in the applications section below.

For inhibitors of PPIs, the binding site should be located
on the protein-protein interface [2]. These interfaces have
contact areas varying from 550-4900A2 and are typically
dominated by steric and hydrophobic interaction, although
there also exist electrostatic interactions and hydrogen bonds
[162]. The latter types of interactions may be considered
desirable to include in a binding pocket as they may facilitate
the selection of more specific inhibitors. Visual inspection of
the protein surface is helpful for selecting a binding pocket,
especially following the placement of spheres as used in
DOCK. Such inspection along with consideration of residue
types, experimental mutation data and homology data should
then be used to select several potential sites for docking.

Once several possible sites are selected, test docking may
be undertaken to identify a suitable binding pocket for the
full docking study. In our laboratory test docking involves
docking a set of 1000 diverse compounds. The spatial
distribution of the ligands along with the extent of the
ligands overlapping with the binding site are then used to
rate the site via a term referred to as the binding pose [163].
A larger binding pose is associated with sites in which a
significant portion of the initial ligands remains in the
binding pocket and the binding orientation of all the ligands
are similar. Comparing the binding pose between the
different sites being tested is then used to select the final site
for docking. Alternatively, one can perform docking
calculations simultaneously on several putative binding sites
and rank the ligands by scores adjusted by a statistical
correction with respect to the possible sites, a method
referred to as the multiple active site correction (MASC)
[164]. Another approach related to this correction is a cluster
analysis of the distance between sites [165]. These MASC
treatments can be also used to consider cross docking of
multiple receptor structures.

CONFORMATIONAL SAMPLING

As discussed above docking is typically performed by
explicitly including ligand flexibility, with the protein
structure typically treated as rigid. The latter, undesirable
condition is generally necessary due to computational speed
limitations. Despite this numerous methods do include
protein flexibility to varying extents. The flexibility of the
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protein structure can be considered in three ways. The first is
cross-docking, based on docking to multiple conformations
of a protein. These conformations can be those found in
different crystals, from a single crystal that contains
multiple, non-symmetric copies of the protein, from multiple
NMR structures or generated by molecular dynamics
simulations [166, 167]. The second approach is docking
against an ensemble of the receptor conformations, which
again requires the collection of an ensemble of conforma-
tions [168, 169]. The third method is direct flexible docking,
where the protein conformation is sampled along with that of
the ligand during the posing process [106, 108, 170-179].
While this may be considered the most “correct” approach it
is typically the most expensive method because of the
change of the coordinates of important parts on the receptor.
While such methods allow for limited adjustments of the
side-chains and backbone conformation in the vicinity of the
binding pocked during ligand posing, they generally do not
consider larger scale conformational changes that can occur
upon ligand binding.

A variety of approaches have been used to include
protein flexibility in docking. These include fast Fourier
transform surface matching algorithms [180, 181] (MolFit,
MULTIDOCK, DOT, GRAMM, ZDOCK), geometric
hashing [182, 183] (PPD, PatchDock, BUDDA), genetic
algorithms [86, 98, 99, 103, 184-192] (GAsDock [99],
GAPDOCK [98]), Monte Carlo sampling [93, 95, 193-196]
(ECEPP/3 [95], ICM-DISCO, MCDOCK [194]), and mole-
cular or Brownian-type mechanics procedures (SmoothDock,
TSCF). Recently, the impact of the inclusion of receptor
flexibility in several docking methods has been presented
[121].

Concerning ligand flexibility, several methods beyond
the anchor-based method used in DOCK (see above) have
been developed. These include surface matching methods,
genetic algorithms and Monte Carlo based approaches.
Generally, the “better” an approach, as defined by the ability
to more rigorously sample conformational space, the compu-
tationally more demanding the approach. This compromise
requires the selection of a balance between sampling ability
and number of compounds being screened. Thus, for an
extensive screen of a database of 1 million or more
compounds, the computationally efficient anchor search
method may be the most appropriate. However, in cases
where a smaller number of ligands are to be docked and it is
desirable to maximize the potential of identifying more
accurate poses alternate methods, including those described
below should be considered.

The surface matching methods aim at finding the
transformation that will yield the maximum number of
matching surface points for the receptor and the ligand.
Geometric hashing algorithms [182, 183] solve the surface
matching problem by a series of special steps. First, all
triplets of atoms on the surface of both the receptor and the
ligand are computed and their unique coordination systems
are kept in a so-called Hash table. Second, the triplets from
the receptor are compared to the ones from the ligand. Then,
the set of triplets that yields the maximum number of
matches are used to derive the transformation, T, that results
in the best least-squares match between corresponding
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triplets. Finally, the transformation T is app-lied to see if the
resulting transformation abides by geome-tric and energetic
constraints. If not, another receptor triplet will be used for
the search. In Surflex, a flexible molecular docking algo-
rithm, the search engine relies on a surface-based molecular
similarity method as a means to rapidly generate suitable
putative poses for molecular fragments [118].

Genetic algorithms as general tools for optimization were
introduced in the 1970s and developed in the past decade
[86, 98, 99, 103, 184-192]. First, alternative ligand positions
and conformations are generated, forming an initial
population of solutions. The initial population is then
evolved, meaning that only the "most fit" or lowest energy
ligand positions survive into the next generation. Then, new
"individuals" or ligand states are generated through mutation
and crossover. With each successive generation, "more
evolved" or lower energy ligand positions are produced,
thereby finally achieving the "most evolved” or lowest
energy binding modes.

In the Monte Carlo (MC) methods [93, 95, 193-196],
ligand positions near the active site are randomly generated
and subsequently optimized, with the selection of steps (i.e.
conformational changes) performed via the Metropolis
criteria. Use of this approach allows for increases and
decreases in interaction energy with the protein, where the
former are important to overcome energy barriers between
low energy conformations. Usually, multiple steps are
combined in Monte Carlo procedures. In the first step
positions and conformations are sampled and the interaction
energy minimized starting from an approximate pre-selected
docking position. The resulting conformations are further
optimized in the second step by a Metropolis Monte Carlo
minimization, which optimizes each of these structures
[196]. In one more Monte Carlo run following the Metro-
polis MC step, a pair wise atom potential function is used,
and the temperature parameter is slowly lowered during the
run effectively minimizing the ligand-protein complex
structure (Simulated Annealing) [93]. The MC procedure can
be repeated many times, potentially achieving a near
exhaustive sampling of conformational possibilities for the
ligand-protein complex.

SCORING FUNCTIONS

Scoring functions are the central part of screening
procedures as they direct both the posing as well as yield the
final ranking of the docked compounds. There are two
classes of scoring functions that are commonly used. The
first type is based on energies that include terms describing
electrostatic, van der Waals, H-bonding, torsional, and
solvation contributions. These are referred to as force field
based methods and may include all or only a subset of the
listed terms. These types of scoring functions, or their
derivatives, are also referred to as empirical scoring
functions. The second type is referred to as knowledge-based
scoring functions, which may consider geometric and
chemical complementarities, requirements based on known
biological functions, as well as numerical corrections based
on the use of databases and the limitations in conventional
scoring functions. In Table 1 examples of a number of
scoring function terms representative of both types of
functions used in database screening are presented.
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Table 1. Example Scoring Functions Used in Virtual Database Screening
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Force field methods are typically based on the calculation
of intermolecular interaction energies, although intramole-
cular terms related to strain energies are important and
should be considered if possible. These scoring functions
basically consists of the vdWs interaction expressed in terms
of the Lennard-Jones potential and the electrostatic energy
by Coulomb’s law. Equation 1 in Table 1 gives the
intermolecular interaction containing the vdW and the
electrostatic terms. In eq 1, rj; is the distance between atom i
and j. and A; and Bj are the Lennard-Jones coefficients

related to repulsion and attraction, respectively. Generally,
the Lennard-Jones 6-12 potential is used, as in DOCK [81],
however special potential may be employed, such as the 8-4
potential in GOLD [103]. g; and q; are the formal charges
and 332.0 is a factor converting the electrostatic energy to
kilocalories per mole. The e(rj) is distance-dependent
dielectric constant, with a value of e = 4 typically used in
DOCK. A distance-dependent or r-dependent dielectric is
used as it is a simple way to mimic the presence of solvent
due to the increase in the dielectric as the atoms move further
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apart, which mimics the increase in dielectric as water moves
between the atoms. A soft-core Coulombic potential,
obtained by adding a constant c to the distanc, rj;, i.e. (rjj+c),
may also be used as the electrostatic term [201]. For saving
computational time, the summation over receptor atoms in
the equation 1 can be computed in advance on a grid overlaid
on the binding site [202] such that only the summation over
ligand atoms has to be computed during the conformation
searching to obtain the interaction energy.

The change of the ligand intramolecular geometry leads
to changes in the internal, strain or intra-molecular energy.
Most docking programs ignore this term or combine this part
with other empirical terms. Equation 2 gives an example of
the function to calculate the intramolecular energy within a
ligand. F(rijB‘i) are either hydrogen bonds or steric interac
tions specified by the atom type index Bj; between all non-
hydrogen atoms. The dihedral rotation term in eq. 2 is
originally from the work of Gehlhaar et al. [203]. The values
of A, m, and qp are set to 3.0, 3, and p for sp3-sp3 bond; and
to 1.5, 6, and O for sp3-sp2 bond. Additional parameters may
be used for other types of bonds [100, 204].

Hydrogen bonding is another important factor that may
be considered. In equation 3, H-bonding is described by a
Lennard-Jones type formula with parameters Cij and Dij for
repulsion and attraction, respectively. x(t) is a weight
depending on the angle, t, of the H-bond [86]. In GOLD and
SYBYL/ G-Score [103], the H-bond term is considered
according to the type and the geometry of the donor-acceptor
pairs. SYBYL/ChemScore does not distinguish neutral and
ionic H-bonds, but adds an additional term for considering
the interaction between ligands and metal ions residing in a
binding site [205]. Alternatively, in equation 4, hydrogen
bonding is calculated as a spherical Gaussian where
E%bona=2.5 kcal/mole as an average of various estimates,
dbong=1.4A as a radius of the interaction sphere, and rep=1.7
A as the reference radius value [197].

The free energy of binding in solvent can be computed
according to Hess’s law of heat summation, DG(binding,
solution) = DG(binding, gas) + DG(complex, solution) -
DG(receptor, solution) - DG(ligand, solution). The last three
terms contribute to the solvation effect. As an approxi-
mation, the solvation effect can be simply evaluated as the
desolvation energy of the small molecule, -DG(ligand,
solution), when the receptor is much larger than the ligand,
i.e. DG(complex, solution) - DG(receptor, solution) » 0.
Solvation effects can be computed in many different ways,
including the use of an r-dielectric as discussed above. In
equation 5 the solvation energy is based on the function of
Stouten et al. [206] S and V denote the solvation parameter
and fragmental volume, respectively. The exponential term is
an envelope function with a constant of s = 3.5 A. Another
approach, shown in equation 6 is based on a desolvation
penalty for each ligand [177] obtained by summing over the
ligand atomic contribution DG; which may be calculated
using the semi-empirical program AMSOL [207, 208]. The
contribution is normalized by a contacting factor F; which
has value of 1 when the atom is completely buried in the
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receptor and value of zero when the atom is totally exposed
to solvent molecules. Equation 7 has the desolvation free
energy based on the atomic contact energy (ACE) [198]
denoted by ej which is specified by a switch function n;; in
the range 6-10 A in order to avoid a sharp distance cutoff
[209]. By implementing the solvent accessible surface area
(SASA) approximation [210, 211], accurate solvation
models based on the Poisson-Boltzmann equation or Genera-
lized Born equations, e.g. the PBSA (Poisson Boltzmann
Surface Area) or GBSA (Generalized Born Surface Area)
methods are also possible [212,213] although these methods
are computational more expensive making them inappro-
priate for screening large databases.

Knowledge-based functions have attracted a lot of atten-
tion and have been shown to provide practicable predictions
of the relative ordering of ligand affinity. Equation 8 is the
form of a knowledge-based potential of mean force (PMF)
scoring function [113, 114] which is a summation of
distance-dependent interaction potentials including enthalpic
and entropic effects, over all heavy atom pairs, derived based
on statistical analysis of protein-ligand complexes found in
the Protein Database Bank. The LUDI scoring function that
yields free energies as developed by Bohm is shown in
Equation 9 [199]. The neutral and ionic H-bonds are
separately treated in the first two terms, each having a
reference value scaled by distance- and angle-dependent
factors for each interacting pair. The hydrophobic interaction
is scaled by a factor based on the hydrophobic buried area.
The torsional entropy loss is expressed in the fifth term. The
last term is a constant based on regression analysis of
available complexes for a given target protein. The F-Score
used in FlexF is similar to the LUDI scoring function, but the
hydrophobic term is replaced with a term for the interaction
between aromatic groups and a general distance-dependent
contact term [97]. Equation 10 is that used in DrugScore
[200, 214], a knowledge-based potential which combines
distance-dependent pair potential and solvent-accessible
surface (SAS) dependent terms. Each potential is calculated
as the logarithm of an occurrence frequency derived from a
large set of protein-ligand complex structures. The factor gis
an adjustable weight with a normal value of 0.5.

Two additional scoring functions are shown in equations
11 and 12. Equation 11 is a pharmacophore-based interaction
energy between the ligand and the hot-spot atoms on the
protein. W; is the pharmacophore weight of the hot-spot
atom j and will be set to zero if the interaction type of the
ligand atom does not match that of the hot-spot.F(rijB”)is
defined as in equation 2. This approach is used in
GEMDOCK [100,204]. Equation 12 involves a correction
[86] with consideration of quantitative structure-activity
relationships (QSAR) data from statistical analysis of the
multilinear regressions a; for selected 2D descriptors Dj;
labeled by index i for each ligand j.

DOCK [81] uses equation 1 with the option of including
an additional desolvation energy term. AutoDock [86] uses

equations 1 and 3 for both the inter-molecular and intra-
molecular energies. In TreeDock, only a 6-12 Lennard-Jones
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potential is used [119]. In PLP, a scoring system
implemented in the software Cerius2 [203], all atom pairs
are divided into three categories, i.e. hydrogen donor-
acceptor pairs, repulsive donor-donor or acceptor-acceptor
pairs, and generic dispersion of other contact pairs, each
being described by the Lennard-Jones potential. In G-Score
[103], the scoring function contains a Lennard-Jones 8-4
potential, a H-bond term, and an internal ligand energy term
similar to the terms in the equation 2. X-Score uses the vdW
interaction based on an 8-4 Lennard-Jones term, a hydrogen
bonding term, a hydrophobic effect term, a torsional entropy
penalty, and a regression constant [215].

Several studies have performed comparisons of some of
the above scoring functions [216]. Wang and co-workers
presented a comparative evaluation of 11 scoring functions
[124] and pointed out that some scoring functions including
PLP, F-Score, LigScore, DrugScore, LUDI, and X-Score,
yield higher hit-rates. Based on an extensive evaluation of 14
scoring functions [123], they showed better correlation bet-
ween the affinity and the scores calculated by X-Score,
DrugScore, Sybyl/ChemScore, and Cerius2/PLP score. In
most docking tools, these scoring functions can be used in
combined ways, such as consensus scoring [217-220]. Users
can change the weight coefficients f which dictates the
contribution of each energy term to the overall consensus
energy score to optimize the performance for each system.
Efforts are ongoing in a number of laboratories to improve
scoring functions in order to improve hit rates; however to
date there appears to be no “best” scoring function that is
applicable to all systems. In addition, it should be noted that
the scoring functions typically do not have a direct
relationship with the binding affinity of the ligands (i.e. the
energy scores do not correspond to an absolute free energy
of binding).

One of the general limitations with scoring functions
based on some type of interaction energy is the tendency for
the scoring to favor larger compounds [221]. This is simply
due to the greater number of atoms leading to more favorable
interactions between a larger ligand and a receptor combined
with the omission of desolvation and other contributions that
contribute to binding being omitted from consideration in
many scoring functions, including that in the program
DOCK. The latter contributions will typically be more
unfavorable for the binding of larger compounds, balancing
the more favorable ligand-receptor interactions. To over-
come this limitation we have developed a simple normali-
zation procedure based on the number of non-hydrogen
atoms, N, in a ligand [221]. This involves taking the
interaction energy score and dividing it by N*, where x is an
empirically fit term. The value of x is determined based on
the resulting distribution of molecular weights of the top
scoring compounds; typically a value of x is selected which
yields a collection of compounds with a MW distribution
between 100 and 500 with a maximum around 300 daltons.
Such a distribution of MWSs is desirable for lead-like
compounds [33].

DATABASES AND LIBRARIES

Virtual database screening cannot be performed without
an adequate database (or library) of virtual compounds. For
each compound or entry in a database, the basic information
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stored includes compound name or identification number,
atom types, bond types, connectivity, coordinates, formal
charges, and chirality. Some databases also contain extra
information including molecular properties and descriptors,
as well as application fields and classification information
like drug categories and reaction types. In general, databases
of chemical compounds can be categorized into three kinds,
with those types discussed in the remainder of this section. It
should be noted that recent studies suggest that the chemical
diversity of some existing commercial databases might not
include the chemical space describing PPI inhibitors [222].

The first type of database involves collections of as many
as possible compounds from selected sources. Most chemical
companies provide such databases, which include comp-
ounds that are available in stock or can be readily synthesi-
zed. Following is a list of some online-searchable chemical
databases with their approximate current size in parentheses:
Asinex (129,000), Chembridge (371,000), Chemdiv
(750,000), Comgenex (120,000), Life Chemicals (385,000),
Maybridge (60,000), MDD (33,000), Nanosyn (47,000), NCI
(250,000), Sigma_Aldrich (90,000), Specs (232,000), Timtec
(165,000) and Tripos (80,000). A longer list of databases can
be found in an evaluation work by Sirois and coworkers
[223]. These publicly available databases can be compiled
into meta-database like “Ligand.info” [224] which contains
more than 1 million low-molecular weight compounds.

The second type of database contains specific compounds
selected for certain characteristics or purposes. Examples
include the Derwent World Drug Index (WDI) database,
which contains almost 80,000 drugs and pharmacologically
active compounds, ZINC [225] containing about 728,000
purchasable compounds ready for docking, and SuperNatural
[226] which contains a database of approximately 50,000
natural compounds including most drugs on the market.
Several databases of ligand-protein complexes are available.
SitesBase is a database about the structural similarities
between known ligand binding sites found in the Protein
Data Bank [227]. LigBase [228] contains approximately
50,000 ligand-protein structures also from the PDB. Ligand-
Protein DataBase (LPDB) is designed to use known
receptor-ligand complexes to improve docking scoring
functions [229]. PDBbind database [230] (http://www.
pdbbind.org/) provides a comprehensive collection of
binding affinities for the protein-ligand complexes in the
Protein Data Bank (PDB). SuperLigands [231] and PDB-
Ligand [232] are both databases of about 5000 ligands
derived from the Protein Data Bank. Relibase [233] is a
database that provides a query tool for the analysis of
receptor-ligand binding features. GLIDA [234] is a G-
protein coupled receptor (GPCRs) related chemical genomic
database. ChemMine [235] is a compound mining database
for chemical genomics. LIGAND (http://www.genome.ad.jp/
ligand/)is comprised of more than 7300 compounds, 5000
reactions and 3800 enzymes. A review summarizes some
libraries of ligands related to human protein kinases [236].

The third kind of database includes building-blocks or
molecular fragments for the purpose of further molecular
design. Such libraries are provided by many companies
including AKos, Chembridge(PHARMABIock), Chemdiv,
Maybridge, and Key Organics Limited. This class of
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database is appropriate for de novo design or lead
optimization efforts.

Compound databases usually exists in one or more of the
following three formats. One is the 2-dimensional (2D)
structure database file (SDF) based on the MDL convention,
which contains 2D mapping coordinates, connectivity,
chirality, and bond information. In addition, it is possible to
include molecular properties as well as compound identifi-
cation information required for purchasing selected ligands.
SDF is the format that chemical companies typically provide
to users. The information in SDF files may act as the starting
point for the generation of 3D structures followed by for
further geometry optimization [16] and are used in several
database searching algorithms based on 2D molecular
descriptors [237]. The second database format includes 3D
structural information. Examples include the protein data
bank (PDB) and Tripos MOL2 formats and the SDF format
may be extended to contain 3D information. This type of
format is normally used for viewing structures and is
typically the starting point for virtual database screening
studies and these databases also typically include the same
information as the SDF database listed above. However, in
many cases, in order to minimize space requirements, only
the essential information is included such as atom type, bond
type, coordinates, partial charges, and connectivity. In
addition to their use in visualization and screening the
information in 3D format databases may be used to generate
3D molecular descriptors that describe molecular similarity
and diversity based, such as the GETAWAY (GEometry,
Topology, and Atom-Weights AssemblY) descriptors [238,
239]. The third format are searchable databases containing
extensive information for each compound including that in
the first two database formats as well as additional
information. Accordingly, such database can be quite large
and are usually stored in binary format to save disk space.
Examples include the 2D database files prepared by ISIS
(MDL) or other tools that are used for similarity searching,
compound clustering based on the fingerprints (see below) or
other approaches. These databases are often included in and
used by commercially available software packages, including
the molecular operating environment (MOE, Chemical
Computing Group) and Sybyl (Tripos Inc).

Several points concerning databases need to be
emphasized. For performing energy calculations as required
for some scoring functions, it is important to have
satisfactory 3D structures and high quality partial charges for
each ligand. The compounds should be energy minimized to
assure that proper bonds and angles geometries are obtained.
However, typically 3D conformations in a database do not
correspond to the global minimum, althought this is not
important as ligand flexibility is included in the majority of
screening approaches. An alternative are 3D databases in
which a large number of conformations of each compounds
are stored [225]. In such cases the posing procedure will
involve rigid docking of all available conformations of a
compound rather than systematically sampling the ligand
conformation during docking. Partial atomic charges are
historically those from AMBER [143] or from the method of
Gasteiger [240]. Recently, improved partial atomic charges
are being used including those based on AM1 calculations, a
semi-empirical quantum chemical method, combined with a
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charge model like CM2 (Charge Model 2) [208] and BCC
(Bond-Charge Corrections) [241]. The BCC model, which is
implemented in some software packages, including OpenEye
(http://mww.eyesopen.com/), applies bond-charge correc-
tions to the AM1 partial charges on each atom to generate
the final partial charges. It should be noted that semi-
empirical geometry optimization is still too expensive all the
compounds in large databases, such that the charges etc. are
based on geometries obtained from molecular mechanics
optimization. Another recent addition to 3D databases are
free energies of solvation based on the AMSOL
semiempirical solvation model [207, 208]; the availability of
such values may be useful for predicting desolvation
penalties upon binding as well as selecting compounds with
proper solubilities for experimental assay. Finally, the
compounds in a database should be assigned physiologically
relevant protonation states, unnecessary components should
be removed (e.g. the counterions in salts) and chirality of
compounds taken into account.

POST-DOCK PROCESSING: RULES FOR
SELECTION OF FINAL COMPOUNDS FOR
EXPERIMENTAL ASSAY

In spite of the limitations of current docking programs,
docking algorithms and their associated scoring functions
these approaches are helpful at selecting small molecules
with a high probability of binding to the target protein. To
facilitate the selection of biologically active compounds
from a virtual database screen a number of additional criteria
should be considered beyond the direct ranking from the
docking itself. This step, as shown in Figure 1, may be
referred to as post-dock processing. The factors include
maximizing the chemical diversity of compounds for assay,
the physical properties of the compounds and additional
scoring of the compounds. The remainder of this section will
focus on the first two considerations as alternate scoring
considerations were discussed above.

Concerning chemical diversity, intuitively it may be
considered desirable to subject compounds that cover the
widest range of chemical space and are still structurally
complementary to the target protein to experimental assay
[16]. Indeed, work in our laboratory has shown that selection
of chemical diverse compounds from the top scoring
compounds leads to improved hits rates as compared to
selection of compounds based on their docked scores alone
[242]. To maximize the chemical diversity of compounds
selected for assay, we apply the following approach.
Typically, the top 1000 compounds are selected from the
secondary posing and scoring in the virtual screening process
based on normalized energy scoring (see Figure 1 and
following paragraph). These compounds are then subjected
to similarity clustering based on chemical fingerprints [243,
244]. In this approach each compounds is assigned a
fingerprint that is a binary string of 1024 bits with each bit
representing a chemical feature (e.g. atom type, bond type,
aromatic ring etc.). The fingerprint (or bit string) for each
compound allows for the compounds to readily be compared
based on the Tanimoto index, ultimately allowing them to be
grouped into clusters of chemically similar compounds.
Typically, for a 1000 compounds, approximately 100
clusters of varying size are obtained. One or two compounds
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are then selected from each cluster for experimental assay,
with the selection process considering physical properties
discussed below. This yields a collection of 100 to 200
compounds which are all structurally complementary to the
binding site and have maximum chemical diversity for assay.
It should be noted that various types of fingerprints are
available, including those based on the content (2D) of
substructures, pharmacophore points, and biological/physical
properties as well as in the spatial arrangement of these
pharmacophore points [237, 245-248].

The second consideration during final compounds
selection is physical properties. The classic properties
considered are based on the rule-of-five proposed by
Lipinski in 1997 and reprinted in 2001 [33,249,250]. The
rule-of-five was derived from statistical analysis of available
drugs and other active, drug-like molecules. The descriptors
used in the rule are molecular weight (MW), number of H-
bond acceptors (Ha), number of H-bond donors (Hd), and
logarithm of the octanol/water partition coefficient estimated
by Kowwin (LogP). The values for each of these terms are
close to five or a factor of five, i.e. MW< 500, Ha < 10, Hd <
5, and -5 < ClogP < 5. This empirical rule has been further
developed [251] and recently reviewed [252] and alternate
rules based on polar surface area and number of rotatable
bonds have been presented [253]. In addition absorption,
distribution, metabolism and excretion (ADME) considera-
tions can be taken into account when selecting compounds
[254], functional groups which are problematic for medicinal
chemistry during the lead optimization process can be
flagged [255, 256], and checks may be made for promis-
cuous compounds (i.e. compounds that non specifically
inhibit a wide range of proteins) [257, 258]. More detailed
consideration of compound selection criteria can be found in
Olah and Oprea’s work [252].

In our laboratory, the Lipinski’s rules are typically
implemented in the following manner. The top 1000
compounds are selected based on DOCK interaction energy
scores normalized to account for ligand size and subse-
quently clustered into approximately 100 clusters. The
compounds in each cluster are then analyzed with respect to
Lipinski’s rules and one or two compounds that meet those
rules are selected for experimental assay. Emphasis in the
selection process is towards smaller compounds, as these are
more lead-like versus drug like [33]. However, if none of the
compounds in a cluster meet those criteria compounds are
still selected from that cluster for analysis. In addition, we do
not consider ADME properties at this stage as the goal is to
obtain a collection of lead compounds with maximal
chemical diversity rather than identifying drugs per se. Also,
the possibility of promiscuous compounds is not considered,
although experimental assays should be performed to
determine if such compounds are identified as active in the
experimental assay [257, 258]. Overall, it should be
remembered that at the lead identification stage, it is lead-
like compounds rather than drug-like compounds that are
being selected; undesirable properties of active lead
compounds may be modified via medicinal chemistry when
optimizing a lead into drug candidate.
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EXAMPLES OF VIRTUAL SCREENING APPLI-
CATIONS

As discussed in the introduction PPIs represent a class of
interactions that play a significant role in almost all aspects
of biology. A number of reviews on specific systems that
involve PPIs were cited above allowing the reader to access
information on these systems. In this section an overview of
published results for 4 well studied systems is presented.
These overviews are designed to allow the topics discussed
above to be placed in more concrete terms, yielding a clearer
understanding of how CADD may be applied to identify lead
compounds that inhibit PPIs.

BCL-2

Computational methods have been successful in
identifying inhibitors of the Bcl-2 protein [285], which is
involved in apoptosis (Fig. 2A) [259, 260]. Cancer cells
suppress programmed cell death by upregulating Bcl-2 and
preventing apoptosis, such that drugs that inhibit Bcl-2 could
be used in therapies to eliminate cancer cells. The ‘Bcl-2’
protein family contains several proteins involved in
apoptosis. Bcl-2 and Bcl-xL are anti-apoptotic proteins
which inhibit the pro-apoptotic proteins Bax and Bak, and
are themselves inhibited by BH3 [261, 262]. Bcl-2 is a good
target for the inhibition of its PPIs because it contains a
hydrophobic groove on its surface which is known to bind to
alpha helices on other proteins involved in apoptosis (Fig.
2A) [263]. In, addition, mutations of residues in this groove
have been shown to eliminate Bcl-2’s biological functions
[264].

Virtual screening and homology modeling were used by
Wang and co-workers to identify non-peptidic and cell-
permeable inhibitors of Bcl-2 [260]. The structure of Bcl-2
was built based on the NMR structure of Bcl-xL, which has
47% sequence identity and then minimized using
MSlI/Insight 1l 98 software (Biosym Technologies, San
Diego). The program DOCK 3.5 [80, 81] was then used to
screen the MDL/ACD database [265], targeting the groove
to which the Bak BH3 peptide binds. The top 1000
molecules were then selected and their bound orientations
refined via minimization of the ligand-protein complex using
Sybyl 6.2 (Tripos, St. Louis). 53 compounds with favorable
binding energies, geometries that allowed hydrogen bonding
and diverse structural scaffolds were chosen for assay by
visual inspection. Compound HA14-1 was ultimately
identified as an inhibitor in the uM range. This compounds
allowed apoptosis to occur in human acute myeloid leukemia
cells that were overexpressing the Bcl-2 protein.

A second study also used high-throughput virtual
screening to identify inhibitors of Bcl-2 [259]. As in the
previous study, homology modeling was used to produce a
3D structure of Bcl-2. The sequences of Bcl-2 and Bcl-x
were aligned using BLAST [136], and the 3D structures
created using MODELLER [266], followed by refinement
via MD simulations using CHARMM [125]. During the
course of that study the experimental 3D structure of Bcl-2
became available allowing the modeled protein to be
compared to the reported NMR structure (1BLX) (Petros,
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2001). The fold of the simulated structure and the NMR
structure were the same and the RMSD for heavy atoms in
the BH3 binding site was 1.0 A, where the binding site was
defined as all residues within 8 A of the Bak BH3 peptide.
The NCI 3D database of 206,876 compounds were docked
against the binding site using DOCK and ranked using the
DOCK energy scoring function. Of the 35 compounds
selected for biological assay seven inhibited the binding of
Bak BH3 peptide to Bcl-2 and one of these had an 1Cs, of 4
UM in the inhibition of cell growth and could induce
apoptosis in cancer cells in a manner that correlated with the
Bcl-2 expression level.

P56LCK

The p56 Lymphoid T cell tyrosine kinase (Lck) protein is
a tyrosine kinase from the Src family which is involved in T-
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cell mediated immune responses [267, 268]. Lck is an
interesting multiple domain protein that participates in both
intra- and inter-molecular interactions. The protein consists
of three main domains (kinase, SH2, SH3), inter-domain
linkers and tails. In its inactive form, the SH2 domain is
involved in intramolecular interactions and the kinase is
inactive. One of the first steps in immune response is the
phosphorylation of a tyrosine located in short-recognition
peptides of the membrane-bound CD3 receptor referred to as
ITAMs. The Lck SH2 domain has a high affinity for the
phosphorylated ITAMs and binding to them leads to
activation of the Lck kinase domain [269]. The activated
p56Ick then initiates a signal transduction cascade ultimately
leading to increased interleukin-2 production and stimulation
of T cell growth. Accordingly, inhibition of the protein-
protein interaction between the SH2 and the ITAM peptides

Ay sl

F
Mg i
[ ]

Fig. (2). (A) The cavity of Bcl-2 (red) was based on the complex between the homologous Bcl-xL and BakBH3. The recently reported
structure of Bcl-2 bound to an inhibitor (1YSW.pdb) [285] illustrates the site on the protein surface. (B) The p56lck SH2 domain bound to
the pYEEI peptide (1LKK.pdb) [286] illustrates the hydrophobic pocket which was targeted in drug design. (C) Two chains of the S100B
protein (blue,green) are complexed with the TRTK-12 peptide (LMWN.pdb) [287]. The hydrophobic pocket which was used to identify
small molecule inhibitors is highlighted in yellow. (D) The hydrophobic groove between the CD and ED acidic residues on the ERK surface

(1ERK.pdb) [288] was used as the site for docking small molecules.
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could be of therapeutic value in the area of immuno-
suppression.

MacKerell, Hayashi and coworkers used virtual screen-
ing to identify non-peptide drug-like molecules targeting the
Lck SH2 domain [270, 286]. The SH2 domain contains a
hydrophobic pocket in the pY+3 binding site (pY: phospho-
tyrosine), which mutational studies [271] and the crystal
structures of different Src SH2 domains and ITAM peptides
had identified as a site imparting binding specificity. Fig.
(2B) shows one of these ITAMs bound to the Lck SH2
domain and the location of the targeted hydrophobic site. A
database of 2 million compounds was prepared in-house
from commercially available compounds in a process that
involved building the 3D structures of the compounds,
assigning charges, and minimizing their structures prior to
docking. A two step docking protocol similar to that shown
in Figure 1 was then used. First, the compounds were placed
in the targeted binding site using the anchored search method
in DOCK [80,81] allowing for flexible docking of the
ligands. The top 25,000 compounds from the initial screen
were then selected based on normalized vdW attractive
energies. Total interaction energies have an inherent bias
towards highly charged compounds or very large
compounds, neither of which typically would make suitable
leads. In addition, compounds whose interaction with the
receptor is based on electrostatics may not necessarily have
high steric complementarity to the binding pocket. To
eliminate these biases, compounds were ranked using the
attractive van der Waals energies which were normalized
according to the number of heavy atoms, as discussed above
[272]. The selected compounds were subjected to a second
virtual screening (secondary docking) and were then scored
according to the total normalized interaction energy. The top
compounds were clustered using 2D molecular fingerprints
so that each cluster would have dissimilar compounds and
representatives from each cluster were chosen based on
Lipinski’s rules, with 194 compounds obtained for biological
assay from commercial vendors. Thirteen of the 194
compounds experimentally tested showed inhibitory activity
in mixed lymphocyte reaction assay as well as inhibition of
the binding of the ITAM with the Lck SH2 domain.
Additional assays including fluorescence titrations and
inhibition of Lck SH2 domain-ITAM peptide binding were
used to further validate that the compounds were bound to
the SH2 domain.

A subsequent study has been used to validate several of
the initial actives as lead compounds suitable for optimiza-
tion studies [273]. This involved identifying structurally
similar compounds for 12 of the 13 active compounds via
chemical similarity fingerprint analysis. The new compounds
were then experimentally assayed. Results showed a
majority of the similar compounds to be active for the more
active lead compounds, validating them as viable compounds
for optimization. In contrast, for some of the less active
compounds the similar compounds all had low or no activity,
indicating that additional optimization of these was not
feasible. However, for two of the lowest activity lead
compounds, the majority of similar compounds had good
activity with some of the similar compounds being more
active than the original lead. Thus, these compounds were
“rescued” as viable leads for future development. The results
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for these studies were also used to develop structure-activity
relationship for the inhibitors as well as identify common
binding motifs of the ligands.

S100B

S100B is a calcium binding protein which binds to the C-
terminus of p53 and inhibits its tumor suppressor function
[274, 275]. When S100B binds calcium, it undergoes a
conformational change that exposes a hydrophobic patch of
residues that interact with p53 as seen in Fig. (2C). The
presence of this well-defined ‘hot spot’ deduced from high
resolution crystal and NMR structures [287] made S100B an
attractive target for the development of PPI inhibitors [276].
Virtual screening of 640,000 compounds from an in-house
[16, 277] database of small molecules was done using
DOCK [69, 278]. The binding site was defined based on
spheres created by SPHGEN that were within 14 A of the
amino acids involved in the S100B-p53 interaction.
Compound scoring was based on the attractive vdW
interaction energy in order to ensure that the compounds had
good steric complementarity with the binding pocket. Two
step docking was performed and compounds were chosen
from the second step for biological assay based on their
drug-like properties, their similarity to drug scaffolds and
their chemical diversity. From 60 purchased compounds,
seven were soluble and determined to bind to the S100B site
by fluorescence spectroscopy with Kp values between 1 and
120 puM and by heteronuclear single quantum coherence
NMR titrations. NOEs obtained for one of the compounds
showed that the intended hydrophobic area was being
targeted. Five compounds inhibited growth of melanoma
cancer cells at micromolar concentrations and are currently
being subjected to lead optimization studies.

ERK

The extracellular signal-regulated kinases (ERK1/2) are
part of a signaling pathway involved in cell proliferation.
ERK1/2, c-Jun-N-terminal kinase (JNK) and p38 kinase are
three known mitogen activated (MAP) protein kinases [288]
whose unregulated activation has been linked to cancer and
inflammation [279-281]. In addition, it is thought that
inhibition of ERK may arrest cancer cell proliferation [279-
281]. In the ERK1/2 signaling pathway, only two proteins
are known to activate ERK1/2 through phosphorylation of
residues Thr183 and Tyrl85, MAP Kkinase-1 and 2
(MEK1/2). Upon activation, ERK undergoes a conforma-
tional change [282] and phosphorylates its many substrate
proteins. In vitro, dozens of proteins can be phosphorylated
by ERK. Some are known cognate ERK substrates, like
RSK-1 and ELK-1, but others are also involved in other
signaling pathways. Thus, ERK1/2 represents an interesting
system as it is involved in multiple PPIs, with those different
interactions involved in different signal transduction
pathways. Accordingly, it would be desirable to selectively
inhibit the interaction of ERK1/2 with only one (or a subset)
of their substrate proteins.

In a study by Hancock et al, virtual screening was used to
identify drug-like molecules that could specifically target
ERK phosphorylation of some substrates and not others [76,
283]. To attain this goal, rather than inhibition of the active
(i.e. catalytic or kinase) site, which is likely to block the
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phosphorylation of many substrate proteins, a site in the
protein involved only in PPIs was targeted as shown in Fig.
(2D). The selected site had been characterized through
mutation studies, showing it to be involved in interactions
with MEK1/2 and substrates. In the crystal structure of ERK
[288] this site was shown to consist of two sets of protruding
polar amino acids surrounding a groove in the protein [284]
that is located in the hinge region of the kinase opposite to
the active site. Of these two sites one is common to other
MAP kinases (the CD domain) while the second site (ED
domain) affect the specificity of the interactions with
substrate proteins. Therefore, this region of the protein was
selected as the putative binding site, such that bound
inhibitors would only inhibit downstream phosphorylation of
ERK substrate proteins.

A database of 800,000 compounds was screened using
the DOCK software in a procedure similar to the one
described above for the Lck protein. Bias towards highly
polar compounds was eliminated through the use of a two
step docking algorithm that initially emphasized the vdwW
attractive interaction energy and ligand size normalization
for the primary docking run. 20,000 compounds selected
from the primary docking were then subjected to a more
rigorous secondary docking with 500 compounds selected
based on normalized DOCK total interaction energy scores.
The top 500 compounds were then clustered using Jarvis-
Patrick and MACC-BITS 2D fingerprints into dissimilar
subsets of compounds. One or two compounds with
desirable properties based on Lipinski’s rules were then
selected from each group. 80 compounds were obtained and
tested for biological activity. Several compounds inhibited
the phosphorylation of two ERK substrates, RSK-1 and
ELK-1 and direct binding to the protein was confirmed using
fluorescence spectroscopy. Compounds also showed dose-
dependent inhibition of proliferation in several cancer cell
lines. More recently, inhibitors of ERK targeting the
phosphorylated form of the protein have been identified
(A.D. MacKerell, Jr. and P. Shapiro, Work in progress) and
additional characterization of all the ERK inhibitors
identified to date is ongoing.

SUMMARY

In the present review an overview of various CADD
approaches used in the identification of inhibitors of PPIs
has been given. Emphasis was placed on issues of particular
relevance to PPIs, such as identification of the appropriate
binding site to be targeted during virtual database screening.
However, the majority of the approaches used for PPIs are
relevant to any target protein, making the present overview
of more general utility. In addition, considerations associated
with the final selection of compounds for experimental
assays, referred to as post-dock processing, including the use
of similarity clustering to obtain chemical diverse structures,
were emphasized. This last step is important to maximize
success (i.e. the hit rate) in virtual screen studies as the
methods used in the docking approaches including a variety
of approximations as required due to computational conside-
rations. Despite the limitations, low-molecular weight
inhibitors of PPIs have been identified for a number of
different systems indicating the viability of the CADD
approaches outlined in this review. Such compounds offer
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potential as tools in the field of chemical biology and
chemical genetics and have the potential to be developed into
novel therapeutic agents for a wide variety of disease states.

ACKNOWLEDGEMENTS

Support from the University of Maryland, School of
Pharmacy Computer-Aided Drug Design Center and NIH
grants CA107331 and CA120215 is acknowledged.

REFERENCES

[1] Xenarios, |.; Eisenberg, D. Protein interaction databases. Curr.
Opin. Biotechnol. 2001, 12, 334-339.

[2] Archakov, A. 1.; Govorun, V. M.; Dubanov, A. V.; lvanov, Y. D.;
Veselovsky, A. V.; Lewi, P.; Janssen, P. Protein-protein
interactions as a target for drugs in proteomics. Proteomics 2003, 3,
380-391.

[3] Pagel, P.; Kovac, S.; Oesterheld, M.; Brauner, B.; Dunger-
Kaltenbach, I.; Frishman, G.; Montrone, C.; Mark, P.; Stumpflen,
V.; Mewes, H. W.; Ruepp, A.; Frishman, D. The MIPS mammalian
protein-protein interaction database. Bioinformatics 2005, 21, 832-
834.

[4] Beuming, T.; Skrabanek, L.; Niv, M. Y.; Mukherjee, P.; Weinstein,
H. PDZBase: a protein-protein interaction database for PDZ-
domains. Bioinformatics 2005, 21, 827-828.

[5] Ryan, D. P.; Matthews, J. M. Protein-protein interactions in human
disease. Curr. Opin. Struct. Biol. 2005, 15, 441-446.

[6] Lampson, M. A.; Kapoor, T. M. Unraveling cell division
mechanisms with small-molecule inhibitors. Nat. Chem. Biol. 2006,
2,19-27.

[7] Walsh, C. T. Natural insights for chemical biologists. Nat. Chem
Biol 2005, 1, 122-124.

[8] Roskoski, R., Jr. Structure and regulation of Kit protein-tyrosine
kinase--the stem cell factor receptor. Biochem. Biophys. Res.
Commun. 2005, 338, 1307-1315.

[9] Hopfner, K. P.; Karcher, A.; Shin, D. S.; Craig, L.; Arthur, L. M,;
Carney, J. P.; Tainer, J. A. Structural biology of Rad50 ATPase:
ATP-driven conformational control in DNA double-strand break
repair and the ABC-ATPase superfamily. Cell 2000, 101, 789-800.

[10] He, M. M.; Smith, A. S.; Oslob, J. D.; Flanagan, W. M.; Braisted,
A. C.; Whitty, A.; Cancilla, M. T.; Wang, J.; Lugovskoy, A. A;;
Yoburn, J. C.; Fung, A. D.; Farrington, G.; Eldredge, J. K.; Day, E.
S.; Cruz, L. A.; Cachero, T. G.; Miller, S. K.; Friedman, J. E;
Choong, I. C.; Cunningham, B. C. Small-molecule inhibition of
TNF-alpha. Science 2005, 310, 1022-1025.

[11] Park, S. H.; Raines, R. T. Genetic selection for dissociative
inhibitors of designated protein-protein interactions. Nat.
Biotechnol. 2000, 18, 847-851.

[12] Smukste, I.; Stockwell, B. R. Advances in chemical genetics. Annu.
Rev. Genomics Hum. Genet. 2005, 6, 261-286.

[13] Spring, D. R. Chemical genetics to chemical genomics: small
molecules offer big insights. Chem. Soc. Rev. 2005, 34, 472-482.

[14] Lokey, R. S. Forward chemical genetics: progress and obstacles on
the path to a new pharmacopoeia. Curr. Opin. Chem. Biol. 2003, 7,
91-96.

[15] Barril, X.; Hubbard, R. E.; Morley, S. D. Virtual screening in
structure-based drug discovery. Mini Rev. Med. Chem. 2004, 4,
779-791.

[16] Huang, N.; Nagarsekar, A.; Xia, G.; Hayashi, J.; MacKerell, A. D.,
Jr. Identification of non-phosphate-containing small molecular
weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in
silico screening against the pY + 3 binding site. J. Med. Chem.
2004, 47, 3502-3511.

[17] Cole, J. C.; Murray, C. W.; Nissink, J. W.; Taylor, R. D.; Taylor,
R. Comparing protein-ligand docking programs is difficult.
Proteins 2005, 60, 325-332.

[18] Khandelwal, A.; Lukacova, V.; Comez, D.; Kroll, D. M.; Raha, S.;
Balaz, S. A combination of docking, QM/MM methods, and MD
simulation for binding affinity estimation of metalloprotein ligands.
J. Med. Chem. 2005, 48, 5437-5447.

[19] Cho, A. E.; Guallar, V.; Berne, B. J.; Friesner, R. Importance of
accurate charges in molecular docking: quantum mechanical/
molecular mechanical (QM/MM) approach. J. Comput. Chem.
2005, 26, 915-931.



Computational Identification of Inhibitors of Protein-Protein Interactions

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Schneider, G.; Fechner, U. Computer-based de novo design of
drug-like molecules. Nat. Rev. Drug Discov. 2005, 4, 649-663.
Stahura, F. L.; Bajorath, J. New methodologies for ligand-based
virtual screening. Curr. Pharm. Des. 2005, 11, 1189-1202.
Lawrence, D. S. Signaling protein inhibitors via the combinatorial
modification of peptide scaffolds. Biochim. Biophys. Acta 2005,
1754, 50-57.

Eichler, J. Synthetic peptide arrays and peptide combinatorial
libraries for the exploration of protein-ligand interactions and the
design of protein inhibitors. Comb. Chem. High Throughput
Screen. 2005, 8, 135-143.

Deng, Z.; Chuaqui, C.; Singh, J. Knowledge-based design of target-
focused libraries using protein-ligand interaction constraints. J.
Med. Chem. 2006, 49, 490-500.

Macias, A. T.; Mia, M. Y.; Xia, G.; Hayashi, J.; MacKerell, A. D.,
Jr. Lead validation and SAR development via chemical similarity
searching; application to compounds targeting the pY+3 site of the
SH2 domain of p56lck. J. Chem. Inf. Model. 2005, 45, 1759-1766.
Hall, L. H.; Hall, L. M. QSAR modeling based on structure-
information for properties of interest in human health. SAR QSAR
Environ. Res. 2005, 16, 13-41.

Guner, O.; Clement, O.; Kurogi, Y. Pharmacophore modeling and
three dimensional database searching for drug design using
catalyst: recent advances. Cur.r Med. Chem. 2004, 11, 2991-3005.
Bernard, D.; Coop, A.; MacKerell, A. D., Jr. 2D conformationally
sampled pharmacophore: a ligand-based pharmacophore to
differentiate delta opioid agonists from antagonists. J. Am. Chem.
Soc. 2003, 125, 3101-3107.

Bernard, D.; Coop, A.; MacKerell Jr, A. D. Conformationally
sampled pharmacophore for peptidic delta opioid ligands. J. Med.
Chem. 2005, 48, 7773-7780.

Bernard, D.; Coop, A.; Mackerell, A. D. Computer-Aided Drug
Design: Structure-Activity Relationships of Delta Opioid Ligands.
Drug Design Rev. 2005, 2, 277-291.

Dean, P. M,; Lloyd, D. G.; Todorov, N. P. De novo drug design:
integration of structure-based and ligand-based methods. Curr.
Opin. Drug Discov. Devel. 2004, 7, 347-353.

Honma, T. Recent advances in de novo design strategy for practical
lead identification. Med. Res. Rev. 2003, 23, 606-632.

Oprea, T. |.; Davis, A. M.; Teague, S. J.; Leeson, P. D. Is there a
difference between leads and drugs? A historical perspective. J.
Chem. Inf. Comput. Sci. 2001, 41, 1308-1315.

Doman, T. N.; McGovern, S. L.; Witherbee, B. J.; Kasten, T. P.;
Kurumbail, R.; Stallings, W. C.; Connolly, D. T.; Shoichet, B. K.
Molecular docking and high-throughput screening for novel
inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 2002,
45, 2213-2221.

May, A.; Zacharias, M. Accounting for global protein
deformability during protein-protein and protein-ligand docking.
Biochim. Biophys. Acta 2005, 1754, 225-231.

van Dijk, A. D.; Boelens, R.; Bonvin, A. M. Data-driven docking
for the study of biomolecular complexes. FEBS J. 2005, 272, 293-
312.

Mohan, V.; Gibbs, A. C.; Cummings, M. D.; Jaeger, E. P,;
DesJarlais, R. L. Docking: successes and challenges. Curr. Pharm.
Des. 2005, 11, 323-333.

Fradera, X.; Mestres, J. Guided docking approaches to structure-
based design and screening. Curr. Top. Med. Chem. 2004, 4, 687-
700.

Alvarez, J. C. High-throughput docking as a source of novel drug
leads. Curr. Opin. Chem. Biol. 2004, 8, 365-370.
Schneidman-Duhovny, D.; Nussinov, R.; Wolfson, H. J. Predicting
molecular interactions in silico: 1. Protein-protein and protein-drug
docking. Curr. Med. Chem. 2004, 11, 91-107.

Wodak, S. J.; Mendez, R. Prediction of protein-protein interactions:
the CAPRI experiment, its evaluation and implications. Curr. Opin.
Struct. Biol. 2004, 14, 242-249.

Hou, T.; Xu, X. Recent development and application of virtual
screening in drug discovery: an overview. Curr. Pharm. Des. 2004,
10, 1011-1033.

Jansen, J. M.; Martin, E. J. Target-biased scoring approaches and
expert systems in structure-based virtual screening. Curr. Opin.
Chem. Biol. 2004, 8, 359-364.

Jain, A. N. Virtual screening in lead discovery and optimization.
Curr. Opin. Drug Discov. Devel. 2004, 7, 396-403.

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Current Topics in Medicinal Chemistry, 2007, Vol. 7, No. 1 77

Stahura, F. L.; Bajorath, J. Virtual screening methods that
complement HTS. Comb. Chem. High Throughput Screen. 2004, 7,
259-269.

Campbell, S. J.; Gold, N. D.; Jackson, R. M.; Westhead, D. R.
Ligand binding: functional site location, similarity and docking.
Curr. Opin. Struct. Biol. 2003, 13, 389-395.

Kroemer, R. T. Molecular modelling probes: docking and scoring.
Biochem. Soc. Trans. 2003, 31, 980-984.

Brooijmans, N.; Kuntz, I. D. Molecular recognition and docking
algorithms. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 335-373.
Krumrine, J.; Raubacher, F.; Brooijmans, N.; Kuntz, I. Principles
and methods of docking and ligand design. Methods Biochem.
Anal. 2003, 44, 443-476.

Veselovsky, A. V.; lvanov, A. S. Strategy of computer-aided drug
design. Curr. Drug Targets Infect. Disord. 2003, 3, 33-40.
Toledo-Sherman, L. M.; Chen, D. High-throughput virtual
screening for drug discovery in parallel. Curr. Opin. Drug Discov.
Devel. 2002, 5, 414-421.

Sotriffer, C.; Klebe, G. Identification and mapping of small-
molecule binding sites in proteins: computational tools for
structure-based drug design. Farmaco 2002, 57, 243-251.

Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J. Lead
discovery using molecular docking. Curr. Opin. Chem. Biol. 2002,
6, 439-446.

Smith, G. R.; Sternberg, M. J. Prediction of protein-protein
interactions by docking methods. Curr. Opin. Struct. Biol. 2002,
12, 28-35.

Halperin, 1.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of
docking: An overview of search algorithms and a guide to scoring
functions. Proteins 2002, 47, 409-443.

Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. A review of protein-
small molecule docking methods. J. Comput. Aided Mol. Des.
2002, 16, 151-166.

Waszkowycz, B. Structure-based approaches to drug design and
virtual screening. Curr. Opin. Drug Discov. Devel. 2002, 5, 407-
413.

Schneider, G.; Bohm, H. J. Virtual screening and fast automated
docking methods. Drug Discov. Today 2002, 7, 64-70.

Abagyan, R.; Totrov, M. High-throughput docking for lead
generation. Curr. Opin. Chem. Biol. 2001, 5, 375-382.

Langer, T.; Hoffmann, R. D. Virtual screening: an effective tool for
lead structure discovery? Curr. Pharm. Des. 2001, 7, 509-527.

Xu, D.; Xu, Y.; Uberbacher, E. C. Computational tools for protein
modeling. Curr. Protein Pept. Sci. 2000, 1, 1-21.

Zeng, J. Mini-review: computational structure-based design of
inhibitors that target protein surfaces. Comb. Chem. High
Throughput Screen. 2000, 3, 355-362.

Feller, S. M.; Lewitzky, M. Potential Disease Targets for Drugs
that Disrupt Protein - Protein Interactions of Grb2 and Crk Family
Adaptors. Curr. Pharm. Des. 2006, 12, 529-548.

Geyer, J. A.; Prigge, S. T.; Waters, N. C. Targeting malaria with
specific CDK inhibitors. Biochim. Biophys. Acta 2005, 1754, 160-
170.

Inestrosa, N. C.; Alvarez, A.; Dinamarca, M. C.; Perez-Acle, T.;
Colombres, M. Acetylcholinesterase-amyloid-beta-peptide
interaction: effect of Congo Red and the role of the Wnt pathway.
Curr. Alzheimer Res. 2005, 2, 301-306.

Savarino, A. Expanding the frontiers of existing antiviral drugs:
possible effects of HIV-1 protease inhibitors against SARS and
avian influenza. J. Clin. Virol. 2005, 34, 170-178.

Zhu, S.; Tytgat, J. Evolutionary epitopes of Hsp90 and p23:
implications for their interaction. FASEB J. 2004, 18, 940-947.
Markowitz, J.; Chen, |.; Gitti, R.; Baldisseri, D. M.; Pan, Y.; Udan,
R.; Carrier, F.; MacKerell, A. D., Jr.; Weber, D. J. Identification
and characterization of small molecule inhibitors of the calcium-
dependent S100B-p53 tumor suppressor interaction. J. Med. Chem.
2004, 47, 5085-5093.

Markowitz, J.; Mackerell, A. D., Jr.; Carrier, F.; Charpentier, T. H.;
Weber, D. J. Design of Inhibitors for S100B. Curr. Top. Med.
Chem. 2005, 5, 1093-1108.

Archakov, A. 1.; Govorun, V. M.; Dubanov, A. V.; Ilvanov, Y. D.;
Veselovsky, A. V.; Lewi, P.; Janssen, P. Protein-protein
interactions as a target for drugs in proteomics. Proteomics 2003, 3,
380-391.



78 Current Topics in Medicinal Chemistry, 2007, Vol. 7, No. 1

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein-
protein interactions: Progressing towards the dream. Nat. Rev.
Drug Discov. 2004, 3, 301-317.

Bogan, A. A.; Thorn, K. S. Anatomy of hot spots in protein
interfaces. J. Mol. Biol. 1998, 280, 1-9.

Toogood, P. L. Inhibition of protein-protein association by small
molecules: Approaches and progress. J. Med. Chem. 2002, 45,
1543-1558.

Li, X.; Keskin, O.; Ma, B.; Nussinov, R.; Liang, J. Protein-protein
interactions: hot spots and structurally conserved residues often
locate in complemented pockets that pre-organized in the unbound
states: implications for docking. J. Mol. Biol. 2004, 344, 781-795.
Halperin, I.; Wolfson, H.; Nussinov, R. Protein-protein
interactions; coupling of structurally conserved residues and of hot
spots across interfaces. Implications for docking. Structure 2004,
12, 1027-1038.

Hancock, C. N.; Macias, A.; MacKerell, J. A. D.; Shapiro, P.
Mitogen Activated Protein (MAP) Kinases: Development of ATP
and Non-ATP Dependent Inhibitors. Med. Chem. 2006, 2, 213-222.
Pieper, U.; Eswar, N.; Davis, F. P.; Braberg, H.; Madhusudhan, M.
S.; Rossi, A.; Marti-Renom, M.; Karchin, R.; Webb, B. M.;
Eramian, D.; Shen, M. Y.; Kelly, L.; Melo, F.; Sali, A.
MODBASE: a database of annotated comparative protein structure
models and associated resources. Nucleic Acids Res. 2006, 34,
D291-295.

John, B.; Sali, A. Comparative protein structure modeling by
iterative alignment, model building and model assessment. Nucleic
Acids Res. 2003, 31, 3982-3992.

Canutescu, A. A.; Dunbrack, R. L., Jr. MolIDE: a homology
modeling framework you can click with. Bioinformatics 2005, 21,
2914-2916.

Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T.
E. A geometric approach to macromolecule-ligand interactions. J.
Mol. Biol. 1982, 161, 269-288.

Ewing, T. J.; Makino, S.; Skillman, A. G.; Kuntz, I. D. DOCK 4.0:
search strategies for automated molecular docking of flexible
molecule databases. J. Comput Aided Mol. Des. 2001, 15, 411-428.
Charifson, P. S.; Corkery, J. J.; Murcko, M. A.; Walters, W. P.
Consensus scoring: A method for obtaining improved hit rates from
docking databases of three-dimensional structures into proteins. J.
Med. Chem. 1999, 42, 5100-5109.

Gabb, H. A.; Jackson, R. M.; Sternberg, M. J. Modelling protein
docking using shape complementarity, electrostatics and
biochemical information. J. Mol. Biol. 1997, 272, 106-120.

Moont, G.; Gabb, H. A.; Sternberg, M. J. Use of pair potentials
across protein interfaces in screening predicted docked complexes.
Proteins 1999, 35, 364-373.

Jackson, R. M.; Gabb, H. A.; Sternberg, M. J. Rapid refinement of
protein interfaces incorporating solvation: application to the
docking problem. J. Mol. Biol. 1998, 276, 265-285.

Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W.
E.; Belew, R. K.; Olson, A. J. Automated docking using a
Lamarckian genetic algorithm and an empirical binding free energy
function. J. Comput. Chem. 1998, 19, 1639-1662.

Palma, P. N.; Krippahl, L.; Wampler, J. E.; Moura, J. J. BIGGER: a
new (soft) docking algorithm for predicting protein interactions.
Proteins 2000, 39, 372-384.

Wu, G.; Robertson, D. H.; Brooks, C. L., 3rd; Vieth, M. Detailed
analysis of grid-based molecular docking: A case study of
CDOCKER-A CHARMM-based MD docking algorithm. J.
Comput. Chem. 2003, 24, 1549-1562.

Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee,
R. P. Empirical scoring functions: I. The development of a fast
empirical scoring function to estimate the binding affinity of
ligands in receptor complexes. J. Comput. Aided Mol Des. 1997,
11, 425-445.

Comeau, S. R.; Gatchell, D. W.; Vajda, S.; Camacho, C. J.
ClusPro: a fully automated algorithm for protein-protein docking.
Nucleic Acids Res. 2004, 32, W96-99.

Murcia, M.; Ortiz, A. R. Virtual screening with flexible docking
and COMBINE-based models. Application to a series of factor Xa
inhibitors. J. Med. Chem. 2004, 47, 805-820.

de Groot, B. L.; van Aalten, D. M.; Scheek, R. M.; Amadei, A;
Vriend, G.; Berendsen, H. J. Prediction of protein conformational
freedom from distance constraints. Proteins 1997, 29, 240-251.

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

MacKerell Jr et al.

Hart, T. N.; Read, R. J. A multiple-start Monte Carlo docking
method. Proteins 1992, 13, 206-222.

Law, D. S.; Ten Eyck, L. F.; Katzenelson, O.; Tsigelny, I.; Roberts,
V. A, Pique, M. E.; Mitchell, J. C. Finding needles in haystacks:
Reranking DOT results by using shape complementarity, cluster
analysis, and biological information. Proteins 2003, 52, 33-40.
Trosset, J. Y.; Scheraga, H. A. Reaching the global minimum in
docking simulations: a Monte Carlo energy minimization approach
using Bezier splines. Proc. Natl. Acad. Sci. USA 1998, 95, 8011-
8015.

Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. FDS: flexible ligand
and receptor docking with a continuum solvent model and soft-core
energy function. J. Comput. Chem. 2003, 24, 1637-1656.

Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible
docking method using an incremental construction algorithm. J.
Mol. Biol. 1996, 261, 470-489.

Gardiner, E. J.; Willett, P.; Artymiuk, P. J. GAPDOCK: a Genetic
Algorithm Approach to Protein Docking in CAPRI round 1.
Proteins 2003, 52, 10-14.

Li, H.; Li, C.; Gui, C.; Luo, X.; Chen, K.; Shen, J.; Wang, X,;
Jiang, H. GAsDock: a new approach for rapid flexible docking
based on an improved multi-population genetic algorithm. Bioorg.
Med. Chem. Lett. 2004, 14, 4671-4676.

Yang, J. M.; Chen, C. C. GEMDOCK: a generic evolutionary
method for molecular docking. Proteins 2004, 55, 288-304.
Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye,
L. L.; Pollard, W. T.; Banks, J. L. Glide: a new approach for rapid,
accurate docking and scoring. 2. Enrichment factors in database
screening. J. Med. Chem. 2004, 47, 1750-1759.

Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Kilicic,
J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.;
Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: a new
approach for rapid, accurate docking and scoring. 1. Method and
assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739-
1749.

Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and validation of a genetic algorithm for flexible
docking. J. Mol. Biol. 1997, 267, 727-748.

Vakser, I. A. Evaluation of GRAMM low-resolution docking
methodology on the hemagglutinin-antibody complex. Proteins
1997, Suppl 1, 226-230.

Dominguez, C.; Boelens, R.; Bonvin, A. M. HADDOCK: a
protein-protein docking approach based on biochemical or
biophysical information. J. Am. Chem. Soc. 2003, 125, 1731-1737.
Fernandez-Recio, J.; Totrov, M.; Abagyan, R. ICM-DISCO
docking by global energy optimization with fully flexible side-
chains. Proteins 2003, 52, 113-117.

Abagyan, R. A,; Totrov, M. M.; Kuznetsov, D. N. ICM - a new
method for protein modelling and design. Applications to docking
and structure prediction from the distorted native conformation.
J.Comp.Chem. 1994, 15, 488-506.

Cavasotto, C. N.; Abagyan, R. A. Protein flexibility in ligand
docking and virtual screening to protein kinases. J. Mol. Biol. 2004,
337, 209-225.

Diller, D. J.; Merz, K. M., Jr. High throughput docking for library
design and library prioritization. Proteins 2001, 43, 113-124.
Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. LIGPLOT: a
program to generate schematic diagrams of protein-ligand
interactions. Protein Eng. 1995, 8, 127-134.

Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M.
LigandFit: a novel method for the shape-directed rapid docking of
ligands to protein active sites. J. Mol. Graph. Model. 2003, 21,
289-307.

Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J.
PatchDock and SymmDock: servers for rigid and symmetric
docking. Nucleic Acids Res. 2005, 33, W363-367.

Muegge, I.; Martin, Y. C. A general and fast scoring function for
protein-ligand interactions: a simplified potential approach. J. Med.
Chem. 1999, 42, 791-804.

Muegge, I. Effect of ligand volume correction on PMF scoring. J.
Comput. Chem. 2001, 22, 418-425.

Pei, J.; Wang, Q.; Liu, Z; Li, Q.; Yang, K.; Lai, L. PSI-DOCK:
towards highly efficient and accurate flexible ligand docking.
Proteins 2006, 62, 934-946.

Li, L.; Chen, R.; Weng, Z. RDOCK: refinement of rigid-body
protein docking predictions. Proteins 2003, 53, 693-707.



Computational Identification of Inhibitors of Protein-Protein Interactions

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Wriggers, W.; Milligan, R. A.; McCammon, J. A. Situs: A package
for docking crystal structures into low-resolution maps from
electron microscopy. J. Struct. Biol. 1999, 125, 185-195.

Jain, A. N. Surflex: fully automatic flexible molecular docking
using a molecular similarity-based search engine. J. Med. Chem.
2003, 46, 499-511.

Fahmy, A.; Wagner, G. TreeDock: a tool for protein docking based
on minimizing van der Waals energies. J. Am. Chem. Soc. 2002,
124, 1241-1250.

Chen, R.; Li, L.; Weng, Z. ZDOCK: an initial-stage protein-
docking algorithm. Proteins 2003, 52, 80-87.

Erickson, J. A.; Jalaie, M.; Robertson, D. H.; Lewis, R. A.; Vieth,
M. Lessons in molecular recognition: the effects of ligand and
protein flexibility on molecular docking accuracy. J. Med. Chem.
2004, 47, 45-55.

Bursulaya, B. D.; Totrov, M.; Abagyan, R.; Brooks, C. L., 3rd
Comparative study of several algorithms for flexible ligand
docking. J. Comput Aided Mol. Des. 2003, 17, 755-763.

Wang, R.; Lu, Y.; Fang, X.; Wang, S. An Extensive Test of 14
Scoring Functions Using the PDBbind Refined Set of 800 Protein-
Ligand Complexes. J. Chem. Inf. Comput. Sci. 2004, 44, 2114 -
2125.

Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring
functions for molecular docking. J. Med. Chem. 2003, 46, 2287-
2303.

Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M. CHARMM: A program for
macromolecular energy, minimization, and dynamics calculations.
J. Comput. Chem. 1983, 4, 187-217.

Mackerell, A. D., Jr. Empirical force fields for biological
macromolecules: overview and issues. J. Comput. Chem. 2004, 25,
1584-1604.

Kramer, B.; Rarey, M.; Lengauer, T. Evaluation of the FLEXX
incremental construction algorithm for protein-ligand docking.
Proteins 1999, 37, 228-241.

Ferrari, A. M.; Wei, B. Q. Q.; Costantino, L.; Shoichet, B. K. Soft
docking and multiple receptor conformations in virtual screening.
J. Med. Chem. 2004, 47, 5076-5084.

Janin, J.; Seraphin, B. Genome-wide studies of protein-protein
interaction. Curr. Opin. Struct. Biol. 2003, 13, 383-388.

Ritchie, D. W. Evaluation of protein docking predictions using Hex
3.1in CAPRI rounds 1 and 2. Proteins 2003, 52, 98-106.

Mendez, R.; Leplae, R.; Lensink, M. F.; Wodak, S. J. Assessment
of CAPRI predictions in rounds 3-5 shows progress in docking
procedures. Proteins 2005, 60, 150-169.

Mendez, R.; Leplae, R.; De Maria, L.; Wodak, S. J. Assessment of
blind predictions of protein-protein interactions: current status of
docking methods. Proteins 2003, 52, 51-67.

Janin, J.; Henrick, K.; Moult, J.; Eyck, L. T.; Sternberg, M. J,;
Vajda, S.; Vakser, I.; Wodak, S. J. CAPRI: a Critical Assessment
of PRedicted Interactions. Proteins 2003, 52, 2-9.

Dixon, J. S. Evaluation of the CASP2 docking section. Proteins
1997, Suppl 1, 198-204.

Dunbrack, R. L., Jr.; Gerloff, D. L.; Bower, M.; Chen, X
Lichtarge, O.; Cohen, F. E. Meeting review: the Second meeting on
the Critical Assessment of Techniques for Protein Structure
Prediction (CASP2), Asilomar, California, December 13-16, 1996.
Fold. Des. 1997, 2, R27-42.

Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang,
Z.; Miller, W.; Lipman, D. J. Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids
Res. 1997, 25, 3389-3402.

Jones, D. T.; Swindells, M. B. Getting the most from PSI-BLAST.
Trends Biochem. Sci. 2002, 27, 161-164.

Schaffer, A. A.; Aravind, L.; Madden, T. L.; Shavirin, S.; Spouge,
J. L.; Wolf, Y. I.; Koonin, E. V.; Altschul, S. F. Improving the
accuracy of PSI-BLAST protein database searches with
composition-based statistics and other refinements. Nucleic Acids
Res. 2001, 29, 2994-3005.

Higgins, D. G. CLUSTAL V: multiple alignment of DNA and
protein sequences. Methods Mol. Biol. 1994, 25, 307-318.
Thompson, J. D.; Higgins, D. G.; Gibson, T. J. CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res. 1994, 22,
4673-4680.

[141]

[142]

[143]

[144]

[145]
[146]

[147]

[148]
[149]
[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Current Topics in Medicinal Chemistry, 2007, Vol. 7, No. 1 79

Huang, X. On global sequence alignment. Comput. Appl. Biosci.
1994, 10, 227-235.

Sakakibara, Y.; Brown, M.; Hughey, R.; Mian, I. S.; Sjolander, K.;
Underwood, R. C.; Haussler, D. Stochastic context-free grammars
for tRNA modeling. Nucleic Acids Res. 1994, 22, 5112-5120.

Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.;
Merz, K. M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods,
R. J. The Amber biomolecular simulation programs. J. Comput.
Chem. 2005, 26, 1668-1688.

Christen, M.; Hunenberger, P. H.; Bakowies, D.; Baron, R.; Burgi,
R.; Geerke, D. P.; Heinz, T. N.; Kastenholz, M. A.; Krautler, V.;
Qostenbrink, C.; Peter, C.; Trzesniak, D.; van Gunsteren, W. F.
The GROMOS software for biomolecular simulation:
GROMOSO05. J. Comput. Chem. 2005, 26, 1719-1751.

Lee, B.; Richards, F. M. The interpretation of protein structures:
estimation of static accessibility. J. Mol. Biol. 1971, 55, 379-400.
Ferrin, T. E.; Huang, C. C.; Jarvis, L. E.; Langridge, R. The
MIDAS display system. J. Mol. Graphics 1988, 6, 13-27.

Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S,
Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera--a
visualization system for exploratory research and analysis. J.
Comput. Chem. 2004, 25, 1605-1612.

Connolly, M. Analytical molecular surface calculation. J. Appl.
Cryst. 1983, 16, 548-558.

Connolly, M. L. Solvent-accessible surfaces of proteins and nucleic
acids. Science 1983, 221, 709-713.

Bhat, S.; Purisima, E. O. Molecular surface generation using a
variable-radius solvent probe. Proteins 2006, 62, 244-261.

Rocchia, W.; Sridharan, S.; Nicholls, A.; Alexov, E.; Chiabrera, A.;
Honig, B. Rapid grid-based construction of the molecular surface
and the use of induced surface charge to calculate reaction field
energies: applications to the molecular systems and geometric
objects. J. Comput. Chem. 2002, 23, 128-137.

Pedretti, A.; Villa, L.; Vistoli, G. VEGA: a versatile program to
convert, handle and visualize molecular structure on Windows-
based PCs. J. Mol. Graph. Model. 2002, 21, 47-49.

Bystroff, C. MASKER: improved solvent-excluded molecular
surface area estimations using Boolean masks. Protein Eng. 2002,
15, 959-965.

Monteiro, M. A.; Chan, K. H.; Rasko, D. A.; Taylor, D. E.; Zheng,
P. Y.; Appelmelk, B. J.; Wirth, H. P.; Yang, M.; Blaser, M. J;
Hynes, S. O.; Moran, A. P.; Perry, M. B. Simultaneous expression
of type 1 and type 2 Lewis blood group antigens by Helicobacter
pylori lipopolysaccharides. Molecular mimicry between h. pylori
lipopolysaccharides and human gastric epithelial cell surface
glycoforms. J. Biol. Chem. 1998, 273, 11533-11543.

Vorobjev, Y. N.; Hermans, J. SIMS: computation of a smooth
invariant molecular surface. Biophys. J. 1997, 73, 722-732.

Sanner, M. F.; Olson, A. J.; Spehner, J. C. Reduced surface: an
efficient way to compute molecular surfaces. Biopolymers 1996,
38, 305-320.

Totrov, M.; Abagyan, R. The contour-buildup algorithm to
calculate the analytical molecular surface. J. Struct. Biol. 1996,
116, 138-143.

Zauhar, R. J. SMART: a solvent-accessible triangulated surface
generator for molecular graphics and boundary element
applications. J. Comput. Aided Mol Des. 1995, 9, 149-159.
Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. GEPOL: an improved
description of molecular surface. 1ll. A new algorithm for the
computation of a solvent-excluding surface. J. Comput. Chem.
1994, 15, 1127-1138.

Connolly, M. L. The molecular surface package. J Mol Graph
1993, 11, 139-141.

Roth, C. M.; Neal, B. L.; Lenhoff, A. M. Van der Waals
interactions involving proteins. Biophys. J. 1996, 70, 977-987.
Berchanski, A.; Shapira, B.; Eisenstein, M. Hydrophobic
complementarity in protein-protein docking. Proteins 2004, 56,
130-142.

Zhong, S.; MacKerell Jr., A. D. Novel scoring functions for in
silico database screening: Binding response and pose-based scaling.
230th ACS National Meeting, in Washington, DC 2005, Aug 28 -
Sept 1.

Vigers, G. P.; Rizzi, J. P. Multiple active site corrections for
docking and virtual screening. J. Med. Chem. 2004, 47, 80-89.
Fukunishi, Y.; Mikami, Y.; Nakamura, H. Similarities among
receptor pockets and among compounds: analysis and application



80 Current Topics in Medicinal Chemistry, 2007, Vol. 7, No. 1

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

to insilico ligand screening. J. Mol. Graph. Model. 2005, 24, 34-
45.

Smith, G. R.; Fitzjohn, P. W.; Page, C. S.; Bates, P. A.
Incorporation of flexibility into rigid-body docking: applications in
rounds 3-5 of CAPRI. Proteins 2005, 60, 263-268.

Barril, X.; Morley, S. D. Unveiling the full potential of flexible
receptor docking using multiple crystallographic structures. J. Med.
Chem. 2005, 48, 4432-4443.

Bastard, K.; Prevost, C.; Zacharias, M. Accounting for loop
flexibility during protein-protein docking. Proteins 2006, 62, 956-
969.

Cavasotto, C. N.; Kovacs, J. A.; Abagyan, R. A. Representing
receptor flexibility in ligand docking through relevant normal
modes. J. Am. Chem. Soc. 2005, 127, 9632-9640.

Zacharias, M. Protein-protein docking with a reduced protein
model accounting for side-chain flexibility. Protein Sci. 2003, 12,
1271-1282.

Liu, Z.; Dominy, B. N.; Shakhnovich, E. I. Structural mining: self-
consistent design on flexible protein-peptide docking and
transferable binding affinity potential. J. Am. Chem. Soc. 2004,
126, 8515-8528.

Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J.
Geometry-based flexible and symmetric protein docking. Proteins
2005, 60, 224-231.

Ehrlich, L. P.; Nilges, M.; Wade, R. C. The impact of protein
flexibility on protein-protein docking. Proteins 2005, 58, 126-133.
Alberts, I. L.; Todorov, N. P.; Dean, P. M. Receptor flexibility in
de novo ligand design and docking. J. Med. Chem. 2005, 48, 6585-
6596.

Zavodszky, M. I.; Kuhn, L. A. Side-chain flexibility in protein-
ligand binding: the minimal rotation hypothesis. Protein Sci. 2005,
14, 1104-1114.

Tatsumi, R.; Fukunishi, Y.; Nakamura, H. A hybrid method of
molecular dynamics and harmonic dynamics for docking of flexible
ligand to flexible receptor. J. Comput. Chem. 2004, 25, 1995-2005.
Wei, B. Q.; Weaver, L. H.; Ferrari, A. M.; Matthews, B. W.;
Shoichet, B. K. Testing a flexible-receptor docking algorithm in a
model binding site. J. Mol. Biol. 2004, 337, 1161-1182.

Lin, J. H.; Perryman, A. L.; Schames, J. R.; McCammon, J. A. The
relaxed complex method: Accommodating receptor flexibility for
drug design with an improved scoring scheme. Biopolymers 2003,
68, 47-62.

Althaus, E.; Kohlbacher, O.; Lenhof, H. P.; Muller, P. A
combinatorial approach to protein docking with flexible side
chains. J. Comput. Biol. 2002, 9, 597-612.

Huang, P. S.; Love, J. J.; Mayo, S. L. Adaptation of a fast Fourier
transform-based docking algorithm for protein design. J. Comput.
Chem. 2005, 26, 1222-1232.

Kovacs, J. A.; Chacon, P.; Cong, Y.; Metwally, E.; Wriggers, W.
Fast rotational matching of rigid bodies by fast Fourier transform
acceleration of five degrees of freedom. Acta Crystallogr. D Biol.
Crystallogr. 2003, 59, 1371-1376.

Jackson, R. M. Q-fit: a probabilistic method for docking molecular
fragments by sampling low energy conformational space. J.
Comput. Aided Mol. Des. 2002, 16, 43-57.

Sandak, B.; Nussinov, R.; Wolfson, H. J. A method for
biomolecular structural recognition and docking allowing
conformational flexibility. J. Comput. Biol. 1998, 5, 631-654.
Cecchini, M.; Kolb, P.; Majeux, N.; Caflisch, A. Automated
docking of highly flexible ligands by genetic algorithms: a critical
assessment. J. Comput. Chem. 2004, 25, 412-422.

Pegg, S. C.; Haresco, J. J.; Kuntz, I. D. A genetic algorithm for
structure-based de novo design. J. Comput. Aided Mol. Des. 2001,
15, 911-933.

Gardiner, E. J.; Willett, P.; Artymiuk, P. J. Protein docking using a
genetic algorithm. Proteins 2001, 44, 44-56.

Politowska, E.; Drabik, P.; Kazmierkiewicz, R.; Ciarkowsk, J.
Docking ligands to vasopressin and oxytocin receptors via genetic
algorithm. J. Recept. Signal Transduct. Res. 2002, 22, 393-409.
Hou, T.; Wang, J.; Chen, L.; Xu, X. Automated docking of
peptides and proteins by using a genetic algorithm combined with a
tabu search. Protein Eng. 1999, 12, 639-648.

Verkhivker, G. M.; Rejto, P. A.; Gehlhaar, D. K.; Freer, S. T.
Exploring the energy landscapes of molecular recognition by a
genetic algorithm: analysis of the requirements for robust docking

[190]

[191]

[192]

[193]

[194]

[195]

[196]
[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

MacKerell Jr et al.

of HIV-1 protease and FKBP-12 complexes. Proteins 1996, 25,
342-353.

Oshiro, C. M.; Kuntz, I. D.; Dixon, J. S. Flexible ligand docking
using a genetic algorithm. J. Comput. Aided Mol. Des. 1995, 9,
113-130.

Willett, P. Genetic algorithms in molecular recognition and design.
Trends Biotechnol. 1995, 13, 516-521.

Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor
sites using a genetic algorithm with a description of desolvation. J.
Mol. Biol. 1995, 245, 43-53.

Rohs, R.; Bloch, I.; Sklenar, H.; Shakked, Z. Molecular flexibility
in ab initio drug docking to DNA: binding-site and binding-mode
transitions in all-atom Monte Carlo simulations. Nucleic Acids Res.
2005, 33, 7048-7057.

Liu, M.; Wang, S. MCDOCK: a Monte Carlo simulation approach
to the molecular docking problem. J. Comput. Aided Mol. Des.
1999, 13, 435-451.

Knegtel, R. M.; Antoon, J.; Rullmann, C.; Boelens, R.; Kaptein, R.
MONTY: a Monte Carlo approach to protein-DNA recognition. J.
Mol. Biol. 1994, 235, 318-324.

Caflisch, A.; Niederer, P.; Anliker, M. Monte Carlo docking of
oligopeptides to proteins. Proteins 1992, 13, 223-230.
Fernandez-Recio, J.; Totrov, M.; Abagyan, R. Soft protein-protein
docking in internal coordinates. Protein Sci. 2002, 11, 280-291.
Zhang, C.; Vasmatzis, G.; Cornette, J. L.; DeLisi, C. Determination
of atomic desolvation energies from the structures of crystallized
proteins. J. Mol. Biol. 1997, 267, 707-726.

Bohm, H. J. The development of a simple empirical scoring
function to estimate the binding constant for a protein-ligand
complex of known three-dimensional structure. J. Comput. Aided
Mol. Des. 1994, 8, 243-256.

Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring
function to predict protein-ligand interactions. J. Mol. Biol. 2000,
295, 337-356.

Li, C. H.; Ma, X. H.; Chen, W. Z.; Wang, C. X. A protein-protein
docking algorithm dependent on the type of complexes. Protein
Eng. 2003, 16, 265-269.

Goodford, P. J. A computational procedure for determining
energetically favorable binding sites on biologically important
macromolecules. J. Med. Chem. 1985, 28, 849-857.

Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P. A.; Sherman, C. J.;
Fogel, D. B.; Fogel, L. J.; Freer, S. T. Molecular recognition of the
inhibitor AG-1343 by HIV-1 protease: conformationally flexible
docking by evolutionary programming. Chem. Biol. 1995, 2, 317-
324.

Yang, J. M.; Shen, T. W. A pharmacophore-based evolutionary
approach for screening selective estrogen receptor modulators.
Proteins 2005, 59, 205-220.

Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee,
R. P. Empirical scoring functions: I. The development of a fast
empirical scoring function to estimate the binding affinity of
ligands in receptor complexes. J. Comput.-Aided Mol. Des. 1997,
11, 425 - 445.

Stouten, P. F. W.; Frommel, C.; Nakamura, H.; Sander, C. An
Effective Solvation Term Based on Atomic Occupancies for Use in
Protein Simulations. Molecular Simulation 1993, 10, 97-&.
Chambers, C. C.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G.
Model for aqueous solvation based on class IV atomic charges and
first solvation shell effects. J. Phys. Chem. 1996, 100, 16385-
16398.

Li, J.; Zhu, T.; Cramer, C. J.; Truhlar, D. G. New class IV charges
model for extracting accurate partial charges from wave functions.
J. Phys. Chem. ser. A 1998, 102, 1820-1831.

Zhang, C.; Chen, J.; DeLisi, C. Protein-protein recognition:
exploring the energy funnels near the binding sites. Proteins 1999,
34, 255-267.

Guvench, O.; Brooks, C. L., 3rd Efficient approximate all-atom
solvent accessible surface area method parameterized for folded
and denatured protein conformations. J. Comput. Chem. 2004, 25,
1005-1014.

Wagoner, J.; Baker, N. A. Solvation forces on biomolecular
structures: a comparison of explicit solvent and Poisson-Boltzmann
models. J. Comput. Chem. 2004, 25, 1623-1629.

Feig, M.; Im, W.; Brooks, C. L., 3rd Implicit solvation based on
generalized Born theory in different dielectric environments. J.
Chem. Phys. 2004, 120, 903-911.



Computational Identification of Inhibitors of Protein-Protein Interactions

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

Feig, M.; Onufriev, A.; Lee, M. S.; Im, W.; Case, D. A.; Brooks, C.
L., 3rd Performance comparison of generalized born and Poisson
methods in the calculation of electrostatic solvation energies for
protein structures. J. Comput. Chem. 2004, 25, 265-284.

Velec, H. F.; Gohlke, H.; Klebe, G. DrugScore(CSD)-knowledge-
based scoring function derived from small molecule crystal data
with superior recognition rate of near-native ligand poses and better
affinity prediction. J. Med. Chem. 2005, 48, 6296-6303.

Wang, R.; Lai, L.; Wang, S. Further development and validation of
empirical scoring functions for structure-based binding affinity
prediction. J. Comput. Aided Mol. Des. 2002, 16, 11-26.

Ferrara, P.; Gohlke, H.; Price, D. J.; Klebe, G.; Brooks, C. L., 3rd
Assessing scoring functions for protein-ligand interactions. J. Med.
Chem. 2004, 47, 3032-3047.

Bissantz, C.; Folkers, G.; Rognan, D. Protein-based virtual
screening of chemical databases. 1. Evaluation of different
docking/scoring combinations. J. Med. Chem. 2000, 43, 4759-
4767.

Charifson, P. S.; Corkery, J. J.; Murcko, M. A.; Walters, W. P.
Consensus scoring: A method for obtaining improved hit rates from
docking databases of three-dimensional structures into proteins. J.
Med. Chem. 1999, 42, 5100-5109.

Terp, G. E.; Johansen, B. N.; Christensen, I. T.; Jorgensen, F. S. A
new concept for multidimensional selection of ligand
conformations  (MultiSelect) and multidimensional scoring
(MultiScore) of protein-ligand binding affinities. J. Med. Chem.
2001, 44, 2333-2343.

Wang, R.; Wang, S. How does consensus scoring work for virtual
library screening? An idealized computer experiment. J. Chem. Inf.
Comput. Sci. 2001, 41, 1422-1426.

Pan, Y.; Huang, N.; Cho, S.; MacKerell, A. D., Jr. Consideration of
molecular weight during compound selection in virtual target-based
database screening. J. Chem. Inf. Comput. Sci. 2003, 43, 267-272.
Pagliaro, L.; Felding, J.; Audouze, K.; Nielsen, S. J.; Terry, R. B,;
Krog-Jensen, C.; Butcher, S. Emerging classes of protein-protein
interaction inhibitors and new tools for their development. Curr.
Opin. Chem. Biol. 2004, 8, 442-449.

Sirois, S.; Hatzakis, G.; Wei, D.; Du, Q.; Chou, K. C. Assessment
of chemical libraries for their druggability. Comput. Biol. Chem.
2005, 29, 55-67.

von Grotthuss, M.; Koczyk, G.; Pas, J.; Wyrwicz, L. S.;
Rychlewski, L. Ligand.Info small-molecule Meta-Database. Comb.
Chem. High Throughput Screen. 2004, 7, 757-761.

Irwin, J. J.; Shoichet, B. K. ZINC--a free database of commercially
available compounds for virtual screening. J. Chem. Inf. Model.
2005, 45, 177-182.

Dunkel, M.; Fullbeck, M.; Neumann, S.; Preissner, R.
SuperNatural: a searchable database of available natural
compounds. Nucleic Acids Res. 2006, 34, D678-683.

Gold, N. D.; Jackson, R. M. SitesBase: a database for structure-
based protein-ligand binding site comparisons. Nucleic Acids Res.
2006, 34, D231-234.

Stuart, A. C.; llyin, V. A;; Sali, A. LigBase: a database of families
of aligned ligand binding sites in known protein sequences and
structures. Bioinformatics 2002, 18, 200-201.

Roche, O.; Kiyama, R.; Brooks, C. L., 3rd Ligand-protein database:
linking protein-ligand complex structures to binding data. J. Med.
Chem. 2001, 44, 3592-3598.

Wang, R.; Fang, X.; Lu, Y.; Yang, C. Y.; Wang, S. The PDBbind
database: methodologies and updates. J. Med. Chem. 2005, 48,
4111-4119.

Michalsky, E.; Dunkel, M.; Goede, A.; Preissner, R. SuperLigands
- a database of ligand structures derived from the Protein Data
Bank. BMC Bioinformatics 2005, 6, 122.

Shin, J. M.; Cho, D. H. PDB-Ligand: a ligand database based on
PDB for the automated and customized classification of ligand-
binding structures. Nucleic Acids Res. 2005, 33, D238-241.
Hendlich, M.; Bergner, A.; Gunther, J.; Klebe, G. Relibase: design
and development of a database for comprehensive analysis of
protein-ligand interactions. J. Mol. Biol. 2003, 326, 607-620.
Okuno, Y.; Yang, J.; Taneishi, K.; Yabuuchi, H.; Tsujimoto, G.
GLIDA: GPCR-ligand database for chemical genomic drug
discovery. Nucleic Acids Res. 2006, 34, D673-677.

Girke, T.; Cheng, L. C.; Raikhel, N. ChemMine. A compound
mining database for chemical genomics. Plant Physiol. 2005, 138,
573-577.

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]
[251]
[252]

[253]

[254]

[255]

[256]

[257]

Current Topics in Medicinal Chemistry, 2007, Vol. 7, No. 1 81

Kimmich, R. D.; Park, W. K. Chemical libraries towards protein
kinase inhibitors. Comb. Chem. High Throughput Screen. 2003, 6,
661-672.

Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors,
In Methods and Principles in Medicinal Chemistry. Wiley-VCH:
New York 2000.

Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P.
Structure/response correlations and similarity/diversity analysis by
GETAWAY descriptors. 2. Application of the novel 3D molecular
descriptors to QSAR/QSPR studies. J. Chem. Inf. Comput. Sci.
2002, 42, 693-705.

Consonni, V.; Todeschini, R.; Pavan, M. Structure/response
correlations and similarity/diversity analysis by GETAWAY
descriptors. 1. Theory of the novel 3D molecular descriptors. J.
Chem. Inf. Comput. Sci. 2002, 42, 682-692.

Gasteiger, J.; Saller, H. Calculation of the Charge Distribution in
Conjugated Systems by a Quantification of the Resonance Concept.
Angew. Chem. Int. Ed. Engl. 1985, 24, 687-689.

Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of
high-quality ~ atomic ~ charges. =~ AM1-BCC  model: Il
Parameterization and validation. J. Comput. Chem. 2002, 23, 1623-
1641.

Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. Adv.
Drug Deliv. Rev. 2001, 46, 3-26.

Butina, D. Unsupervised Data Base Clustering on Daylight's
Fingerprint and Tanimoto Similarity: A Fast and Automated Way
to Cluster Small and Large Data Sets. J. Chem. Inf. Comput. Sci.
1999, 39, 747-750.

Godden, J. W.; Stahura, F. L.; Bajorath, J. Anatomy of fingerprint
search calculations on structurally diverse sets of active
compounds. J. Chem. Inf. Model. 2005, 45, 1812-1819.

Matter, H. Selecting optimally diverse compounds from structure
databases: A validation study of two-dimensional and three-
dimensional molecular descriptors. J. Med. Chem. 1997, 40, 1219-
1229.

Bajorath, J. Selected concepts and investigations in compound
classification, molecular descriptor analysis, and virtual screening.
J. Chem. Inform. Comput. Sci. 2001, 41, 233-245.

Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby,
E.; Schuffenhauer, A. Comparison of topological descriptors for
similarity-based virtual screening using multiple bioactive
reference structures. Org. Biomol. Chem. 2004, 2, 3256-3266.
Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular
similarity searching using atom environments, information-based
feature selection, and a naive Bayesian classifier. J. Chem. Inform.
Comput. Sci. 2004, 44, 170-178.

Oprea, T. I. Current trends in lead discovery: are we looking for the
appropriate properties? J. Comput. Aided Mol. Des. 2002, 16, 325-
334.

Oprea, T. |. Property distribution of drug-related chemical
databases. J. Comput. Aided Mol. Des. 2000, 14, 251-264.

Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five
revolution. Drug Discov. Today: Technol. 2004, 1, 337-341.

Olah, M. M.; Bologa, C. G.; Oprea, T. I. Strategies for compound
selection. Curr. Drug Discov. Technol. 2004, 1, 211-220.

Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K.
W.; Kopple, K. D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615-
2623.

Ekins, S.; Boulanger, B.; Swaan, P. W.; Hupcey, M. A. Towards a
new age of virtual ADME/TOX and multidimensional drug
discovery. J. Comput. Aided Mol. Des. 2002, 16, 381-401.

Walters, W. P.; Stahl, M. T.; Murcko, M. A. Virtual screening - an
overview. Drug Discov. Today 1998, 3, 160-178.

Baurin, N.; Baker, R.; Richardson, C.; Chen, I.; Foloppe, N,
Potter, A.; Jordan, A.; Roughley, S.; Parratt, M.; Greaney, P.;
Morley, D.; Hubbard, R. E. Drug-like annotation and duplicate
analysis of a 23-supplier chemical database totalling 2.7 million
compounds. J. Chem. Inf. Comput. Sci. 2004, 44, 643-651.
McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K. A
specific mechanism of nonspecific inhibition. J. Med. Chem. 2003,
46, 4265-4272.



82 Current Topics in Medicinal Chemistry, 2007, Vol. 7, No. 1

[258]

[259]

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

Feng, B. Y.; Shelat, A.; Doman, T. N.; Guy, R. K.; Shoichet, B. K.
High-throughput assays for promiscuous inhibitors. Nat. Chem.
Biol. 2005, 1, 146-148.

Enyedy, I. J; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X. H.; Cao, Y.
Y.; Guo, R. B.; Li, B. H.; Zhu, X. F.; Huang, Y.; Long, Y. Q.;
Roller, P. P.; Yang, D. J.; Wang, S. M. Discovery of small-
molecule inhibitors of bcl-2 through structure-based computer
screening. J. Med. Chem. 2001, 44, 4313-4324.

Wang, J. L.; Liu, D. X.; Zhang, Z. J.; Shan, S. M.; Han, X. B;;
Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. W.
Structure-based discovery of an organic compound that binds Bcl-2
protein and induces apoptosis of tumor cells. Proc. Nat. Acad. Sci.
USA 2000, 97, 7124-7129.

Beauparlant, P.; Shore, G. C. Therapeutic activation of caspases in
cancer; a question of selectivity. Curr. Opin. Drug Discov. Devel.
2003, 6, 179-187.

O'Neill, J.; Manion, M.; Schwartz, P.; Hockenbery, D. M. Promises
and challenges of targetting Bcl-2 anti-apoptotic proteins for cancer
therapy. Biochim. Biophys. Acta 2004, 1705, 43-51.

Petros, A. M.; Olejniczak, E. T.; Fesik, S. W. Structural biology of
the Bcl-2 family of proteins. Biochim. Biophys. Acta 2004, 1644,
83-94.

Yin, X. M.; Oltvai, Z. N.; Korsmeyer, S. J. Nature 1994, 369, 321-
323.

Sprous, D. G.; Lowis, D. R.; Leonard, J. M.; Heritage, T.; Burkett,
S. N.; Baker, D. S.; Clark, R. D. OptiDock: virtual HTS of
combinatorial libraries by efficient sampling of binding modes in
product space. J. Comb. Chem. 2004, 6, 530-539.

Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M.
Evaluation of comparative protein modeling by MODELLER.
Proteins 1995, 23, 318-326.

Lawrence, D. S.; Niu, J. Protein kinase inhibitors: the tyrosine-
specific protein kinases. Pharmacolo. Ther. 1998, 77, 81-114.

Neel, B. G.; Tonks, N. K. Protein tyrosine phosphatases in signal
transduction. Curr. Opin. Cell Biol. 1997, 9, 193-204.

Moarefi, I.; LaFevre-Bernt, M.; Sicheri, F.; Huse, M.; Lee, C. H.;
Kuriyan, J.; Miller, W. T. Activation of the Src-family tyrosine
kinase Hck by SH3 domain displacement. Nature 1997, 385, 650-
653.

Huang, N.; Nagarsekar, A.; Xia, G. J.; Hayashi, J.; MacKerell, A.
D. Identification of non-phosphate-containing small molecular
weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in
silico screening against the pY+3 binding site. J. Med. Chem. 2004,
47,3502-3511.

Songyang, Z.; Cantley, L. C. Recognition and specificity in protein
tyrosine kinase-mediated signalling. Trends Biochem. Sci. 1995,
20, 470-475.

Pan, Y. P.; Huang, N.; Cho, S.; MacKerell, A. D. Consideration of
molecular weight during compound selection in virtual target-based
database screening. J. Chem. Inform. Comput. Sci. 2003, 43, 267-
272.

Macias, A. T.; Mia, M. Y.; Xia, G. J.; Hayashi, J.; MacKerell, A.
D. Lead validation and SAR development via chemical similarity
searching; Application to compounds targeting the pY+3 site of the
SH2 domain of p56(Ick). J. Chem. Inf. Model. 2005, 45, 1759-
1766.

[274]

[275]

[276]

[277]

[278]

[279]

[280]
[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

MacKerell Jr et al.

Rustandi, R. R.; Baldisseri, D. M.; Weber, D. J. Structure of the
negative regulatory domain of p53 bound to S100B(beta beta). Nat.
Struct. Biol. 2000, 7, 570-574.

Weber, D. J.; Rustandi, R. R.; Carrier, F.; Zimmer, D. B.
Interaction of dimeric S100B(BB) with the tumor supressor
protein:  Amodel for Ca-dependent S100-target protein
interactioins.; Kluwer Academic Publishers: Dordrecht, The
Netherlands 2000, pp. 469-487.

Fry, D. C.; Vassilev, L. T. Targeting protein-protein interactions
for cancer therapy. J. Mol. Med. 2005, 83, 955-963.

Chen, 1. J.; Neamati, N.; MacKerell, A. D., Jr. Structure-based
inhibitor design targeting HIV-1 integrase. Curr. Drug Targets
Infect. Disord. 2002, 2, 217-234.

Markowitz, J.; Chen, J.; Gitti, R.; Baldisseri, D. M.; Pan, Y. P.;
Udan, R.; Carrier, F.; MacKerell, A. D.; Weber, D. J. Identification
and characterization of small molecule inhibitors of the calcium-
dependent S100B-p53 tumor suppressor interaction. J. Med. Chem.
2004, 47, 5085-5093.

Reuter, C. W.; Morgan, M. A.; Bergmann, L. Targeting the Ras
signaling pathway: a rational, mechanism-based treatment for
hematologic malignancies? Blood 2000, 96, 1655-1669.

Kyriakis, J. M.; Abruch, J. Protein kinase cascades activated by
stress and inflammatory cytokiines. Bioessays 1996, 18, 567-577.
Duesbery, N. S.; Webb, C. P.; Vande Woude, G. F. MEK wars, a
new front in the battle against cancer. Nat. Med. 1999, 5, 736-737.
Zhang, J.; Zhang, F.; Ebert, D.; Cobb, M. H.; Goldsmith, E. J.
Activity of the MAP kinase ERK2 is controlled by a flexible
surface loop. Structure 1995, 3, 299-307.

Hancock, C. N.; Macias, A.; Lee, E. K.; Yu, S. Y.; Mackerell, A.
D., Jr.; Shapiro, P. Identification of novel extracellular signal-
regulated kinase docking domain inhibitors. J. Med. Chem. 2005,
48, 4586-4595.

Tanoue, T.; Maeda, R.; Adachi, M.; Nishida, E. Identification of a
dock groove on ERK and p38 MAP kinases that regulates teh
specificity of docking interactions. EMBO J. 2001, 20, 466-479.
Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.;
Augeri, D. J.; Belli, B. A.; Bruncko,, M.; Deckwerth, T. L.; Dinges,
J.; Hajduk, P. J.; Joseph, M. K.; Kitada, S.; Korsmeyer, S. J.;
Kunzer, A. R.; Letai, A.; Li, C.; Mitten, M. J.; Nettesheim, D. G.;
Ng, S.; Nimmer, P. M.; O'Connor, J. M.; Oleksijew, A.; Petros, A.
M.; Reed, JC.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli,
K. J.; Wang, B.; Wendt, M. D.; Zhang, H.; Fesik, S. W,
Rosenberg, S. H. An inhibitor of Bcl-2 family proteins induces
regression of solid tumours. Nature 2005, 435, 677-681.

Tong, L.; Warren, T. C.; King, J.; Betageri, R.; Rose, J.; Jakes, S.
Crystal structures of the human p56(Ick) SH2 domain in complex
with two short phosphotyrosyl peptides at 1.0 angstrom and 1.8
angstrom resolution. J. Mol. Biol. 1996, 256, 601-610.

Inman, K.G.; Yang, R.; Rustandi, R. R.; Miller, K.E.; Baldisseri, D.
M.; Weber, D. J. Solution NMR structure of S100B bound to the
high-affinity target peptide TRTK-12. J. Mol. Biol. 2002, 324,
1003-1014.

Zhang, F.; Strand, A.; Robbins, D.; Cobb, M. H.; Goldsmith, E. J.
Atomic structure of the MAP kinase ERK2 at 2.3 A resolution.
Nature 1994, 367, 704-711.



