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A B S T R A C T   

Drug–target interaction (DTI) prediction reduces the cost and time of drug development, and plays a vital role in 
drug discovery. However, most of research does not fully explore the molecular structures of drug compounds in 
DTI prediction. To this end, we propose a deep learning model to capture the molecular structure information of 
drug compounds for DTI prediction. This model utilizes a transformer network incorporating multilayer graph 
information, which captures the features of a drug’s molecular structure so that the interactions between atoms 
of drug compounds can be explored more deeply. At the same time, a convolutional neural network is employed 
to capture the local residue information in the target sequence, and effectively extract the feature information of 
the target. The experiments on the DrugBank dataset showed that the proposed model outperformed previous 
models based on the structure of target sequences. The results indicate that the improved transformer network 
fuses the feature information between layers in the graph convolutional neural network and extracts the inter-
action data for the molecular structure. The drug repositioning experiment on COVID-19 and Alzheimer’s disease 
demonstrated the proposed model’s ability to find therapeutic drugs in drug discovery. The code of our model is 
available at https://github.com/zhangpl109/DeepMGT-DTI.   

1. Introduction 

The development of new drugs is an expensive and time-consuming 
process. A new drug’s total development cost ranges from US $200 
million to US $3 billion, and the development time is usually 13–15 
years [34]. Therefore, drug repositioning methods have become a hot 
research topic in the field of drug development. An increasing number of 
drug repositioning studies show that drug–target interactions (DTIs) are 
crucial, but it usually takes 2–3 years to validate the accuracy of a DTI 
method through costly large-scale biochemical experiments [21]. 
However, computational DTI prediction methods can shorten DTI vali-
dation time and reduce research costs significantly. The rapid develop-
ment of internet technology has led to the rapid accumulation of data 
about drug compounds, targets, and interactions for computational DTI 
research methods [15,17]. The internet further promotes the develop-
ment of drug repositioning. 

Computational DTI research methods include machine learning, 
deep learning, and graph neural networks. DTI research using machine 
learning can be traced to early work on pharmacological DTI prediction 

[2]. The similarity/distance-based approach used to be a popular 
approach for DTI studies; similarity and distance functions were based 
on the pharmacological and genomic similarities of drugs and existing 
topological networks of drug–target relationships [4,12,35]. Zhang et al. 
[47] proposed the MultiviewDTI approach and improved DTI prediction 
by integrating drug data, target chemistry data, and known DTI data. 
Deep-learning methods are increasingly applied to DTI prediction [13, 
16]. These models are trained by integrating multiple types of data, and 
the extracted feature information is correlated with molecular finger-
prints for DTI prediction [41,42]. 

The rapid development of graph neural networks provides a 
powerful technique for DTI prediction. Wan et al. [38] proposed NeoDTI 
based on heterogeneous network data to perform DTI prediction. The 
results show that NeoDTI can achieve better prediction results. Lee et al. 
[23] represented SMILES sequences as drug molecule strings as Morgan 
fingerprints and used fully connected neural networks for drug feature 
extraction. This method extracted feature information more effectively 
than the Deep DTA [30] method. Although deep learning and graph 
neural network approaches have contributed significantly to the 
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development of DTI research, non-trivial problems remain. The graph 
neural network approach focuses on capturing node information and 
lacks feature learning of edges in the network. This leads to a lack of 
information capturing between nodes.  

1. It is difficult to create a string representation that captures the 
relationship information in a drug molecule. It results in the loss of 
information about the interactions between drug atoms.  

2. Moreover, the sequence representation in the form of a string is 
fragile, and a change in a string is likely to cause the molecular 
structure to change, which is not conducive to storage and research. 

In response to these problems in DTI research, we propose a trans-
former network incorporating multilayer graph information (DeepMGT- 
DTI) to capture the molecular structure of the drug compounds involved 
in DTI prediction. In DeepMGT-DTI, the SMILES string of a drug is 
represented as a drug molecule graph and captures the feature infor-
mation of the molecular structure of the drug compound using a graph 
convolutional neural network. The information in different hidden 
layers of the graph convolutional neural network is also fed into the 
transformer network for an improved multi-headed attention mecha-
nism to mine the mutual information between different atoms in the 
molecular structure of the drug molecule at a deeper level. For the 
sequence structure of the target, we use a convolutional neural network 
to capture the local residue information in the target sequence and 
effectively extract the feature information of the target. This paper 
presents the principal contributions of this study, as summarized below.  

1. The transformer network captures information from different layers 
in the graph convolutional neural network by an improved multi- 
headed attention mechanism. The original information about the 
interactions between atoms in the chemical structure of a drug is 
preserved. The problem of a lack of learning of edge features by the 
graph convolutional neural network is overcome.  

2. The improved graph convolutional neural network is used to learn 
and capture the features of the molecular structure map of the drug 
and extract the atomic information in the molecular structure of the 
drug compound to the maximum extent.  

3. The SMILES sequence string is represented as a molecular structure 
map, which overcomes the disadvantage of the fragility of the 
SMILES sequence. Also, the interconnections between atoms can be 
better represented. 

The rest of this study is organized as follows. In section 2, related 
work is summarized. The proposed methodology is discussed in section 
3. The experimental settings are discussed in section 4, and results are 
presented. Finally, conclusions are drawn in section 5. 

2. Related work 

In recent years, drug–target relationship prediction has become more 
closely linked to drug repositioning and has become a popular research 
component in drug development and biomedicine. The three research 
methods for DTI prediction are based on deep learning, graph neural 
networks, and transformer networks. 

2.1. DTI prediction method based on deep learning 

Deep learning methods can mine the information in a drug and target 
sequence structure to capture the characteristic information of the drug 
and the target. Yang et al. [45] proposed a mutual learning mechanism 
based on the multi-headed attention mechanism and location aware-
ness. The model performance was significantly higher than that of the 
baseline when performing orphan-target and orphan-drug prediction, 
indicating that their proposed method improves the generalization and 
interpretation of DTI modeling. Bahi et al. [1] proposed two new 

methods, SCA-DTIs and SCA-DTA, to predict convolutional neural net-
works (CNNs) and stacked-autoencoder (SAE) DTIs and drug–target 
binding affinity, respectively. The test results on different datasets 
demonstrated the potential of their proposed method for DTI and DTA 
prediction. Huang et al. [18] proposed DeepPurpose, a deep-learning 
library for DTI prediction. They trained DTI prediction models by 
implementing chemical structures of multiple compounds and more 
than 50 neural networks, which performed well on several datasets. 
Zhang et al. [46] used the PubMedBERT method to extract semantic 
elements focusing on COVID-19 and construct a knowledge graph from 
PubMed and other research literature. The TransE method was used for 
knowledge representation. Their method was shown to be feasible for 
drug candidate screening and generation and could be extended to po-
tential drug discovery for other diseases. Lee et al. [23] used the 
DeepConv-DTI method to obtain information about local residues in 
protein sequences and used the obtained information for drug–target 
relationship prediction. The AUC of their model reached 0.852. The 
experimental results supported the aim of the model extracting the 
residue information in protein sequences. The above methods showed 
good prediction results of the models. However, it is challenging to learn 
the complex relationships between different entities for complex histo-
logical data because there is a lack of practical guidance for drug reuse. 

2.2. DTI prediction method based on graph neural network 

The graph neural network can mine for potential associations in the 
histological data and obtain more complex topological structure infor-
mation between entities. To improve the practical use of DTI prediction, 
Nguyen et al. [28] represented the drug as a graph structure and used 
GraphDTA model for drug-target affinity prediction. The experimental 
results showed that graph neural networks further improve the predic-
tion of drug-target affinity. Chu et al. [9] used DTI-CDF to learn multiple 
similarity features between drugs and similarity features between target 
proteins extracted from heterogeneous graphs for drug–target relation-
ship prediction. The DTI-CDF method outperformed integrated learning 
methods, deep neural networks, and DDR [29] methods. In 2021, Cheng 
et al. [8] used graph embedding to obtain node information and sub-
structure information in heterogeneous graphs. An autoencoder was 
used to accomplish drug–target linkage prediction, and good experi-
mental results were obtained. The development of graph neural net-
works has also facilitated the study of molecular structure graphs in 
medicine. Li et al. [24] proposed a SIGN method based on graph neural 
networks that increase the prediction performance between nodes by 
improving the graph attention layer to integrate distance and angle in-
formation between nodes. Wang et al. [40] proposed a multi-view 
comparative representation learning approach (MIRACLE) to predict 
drug interactions. The method views the DDI network as a multi-view. 
Each node in the DDI network is itself a drug molecule graph. The 
MIRACLE method learns structural information of drug molecules by 
using GCN and bond-aware message-passing networks. The DeepCDR 
method [25] performs cancer drug response prediction by automatically 
learning potential representations between atoms and bonds in the 
chemical structure of a drug. The experimental results showed the po-
tential value of DeepCDR in both predictive power and as a method to 
guide disease-specific drug design. 

2.3. DTI prediction method based on transformer network 

After Google proposed the transformer network [37], it was rapidly 
applied to natural language processing [11], computer vision [31], and 
medical artificial intelligence [6]. It was also widely used in drug mo-
lecular structure representation. Huang et al. [19] proposed the mo-
lecular interaction transformer (MolTrans) to address the shortcomings 
of current DTI methods that ignore the nature of DTI substructures and 
the value of unlabeled data. This method extracts the relationships be-
tween substructures from unlabeled biomedical data. Maziarka et al. 
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[27] proposed the molecule attention transformer (MAT). This method 
uses the molecular structure of a drug as the object of study and en-
hances the multi-headed attention mechanism in the transformer 
network using interatomic distances and molecular graph structures. 
Experiments show that MAT is competitive on some molecular predic-
tion tasks. 

The above study shows that a method based on graph neural net-
works can effectively extract topological information from the interac-
tion network and that the drug molecule structure graph contains rich 
feature information, which has garnered considerable interest in the 
research community. The transformer network extracts some of the 

feature information in the drug molecule structure, promoting DTI 
research and development. 

3. Methods 

DeepMGT-DTI performs DTI prediction by integrating the structural 
information of drug molecules and the sequence features of targets. 
DeepMGT-DTI has three main parts: data representation, feature 
extraction, and model prediction, as shown in Fig. 1. We first process 
and integrate the numbers from DrugBank and embed the data repre-
sentation. Then, drug molecule structure information, target sequence 

Fig. 1. Overview of the DeepMGT-DTI model.  
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information, and drug–target action relationships are input. The drug 
and target feature information is extracted using the transformer and 
convolutional neural networks that fuse the graph information, respec-
tively. Finally, we connect the drug and target features and use a fully 
connected neural network for DTI prediction. 

3.1. Data representation 

We process and represent the drug and target data before model 
training. The molecular chemical structure specific to each drug is 
represented as a graph, whose vertices and edges represent the drug’s 
atoms and chemical bonds, respectively. Each drug molecule is repre-
sented using a feature matrix and an adjacency matrix. Each row of the 
feature matrix corresponds to a property of one atom. Each drug is 
denoted as {gi = (Xi,Ai)

N
i=1}, where N is the type of drug, Xi ∈ RDi×C 

denotes the feature matrix of the drug, Ai ∈ RDi×Di is the adjacency 
matrix of the drug, Di denotes the number of atoms of the ith drug, and C 
is the number of characteristic channels of the atoms. 

We perform the embedding operation on the sequence structure of 
the target points before the model training. The embedding process is 
shown in Fig. 2. We randomly initialize a lookup table corresponding to 
all occurrences of amino acids in the target point sequence of size 26 ×
20. Because the embedding vector is trainable, the relevant information 
in the lookup table changes as the model is optimized. Based on the 
lookup table, we can correspond the amino acids in the target sequence 
to construct the embedding matrix of the target sequence. The length of 
the embedding matrix is the maximum length in the target point 
sequence, which we set to 2,500. The width is the width of the lookup 
table. 

3.2. Drug embedding 

Considering the specificity of drug molecules and the limitation of 
the graph convolutional neural network, we designed a transformer 
network that fuses multilayer graph information that is used to extract 
the drug features. The transformer network with fused multilayer graph 
information consists of the molecular complementary graph 

convolutional neural network (MCGCN) and modified transformer 
network. The model structure is shown in Fig. 3. The network takes the 
molecular structure of the drug as input. The MCGCN extracts the drug 
molecular graph information, and the features of each of its layers are 
also input into the transformer network. Different multi-headed atten-
tion mechanisms are used in the transformer network for further feature 
extraction. By further extracting the features of different hidden layers 
in the MCGCN, the information of the edges between atoms in the drug 
molecule graph is preserved, which enriches the features of drug mol-
ecules and overcomes the shortcoming of the GCN, which ignores the 
relationship between nodes. 

3.2.1. Molecular complementary graph convolutional neural network 
Because of the uniqueness of the molecular structure of a drug, 

different drugs have different molecular structures; thus, the molecular 
graph of each drug is unique. The original graph convolutional neural 
network [22] aims to classify nodes for a single graph. To adapt the 
convolutional neural network to our task, we used an MCGCN to ensure 

Fig. 2. Target sequence embedding representation.  Fig. 3. Drug embedding structure.  
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that each drug molecule’s adjacency matrix and feature matrix are the 
same size by adding a complementary graph to the original drug mo-
lecular graph where the original and the complementary graphs are 
independent. The MCGCN has two hidden layers, each followed by a 
ReLU activation function, and uses maximum pooling at the end of the 
MCGCN to reduce the dimensionality of the data. 

Assuming that the original graph of the drug {gi = (Xi,Ai)
N
i=1} is given 

as representation N, the complementary graph of the drug can be rep-
resented as {gc

i = (Xc
i ,A

c
i )

N
i=1}, where the feature and adjacency matrices 

are Xc
i ∈ R(D− Di)×C, Ac

i ∈ R(D− Di)×(D− Di), and D denotes the number of 
atoms after the complementation and is set to 100. After the comple-
mentation operation, the molecular graph of the drug can be represented 
as 

Ai
′

=

[
Ai Bi

BT
i Ac

i

]

,Xi
′

=

[
Xi

Xc
i

]

, (1)  

where Bi ∈ RDi×(D− Di) denotes the connection matrix between the orig-
inal and the complemented graph of the ith drug, and Ai

′

∈ RD×D, Xi
′

∈

RD×C are the adjacency matrix and the feature matrix after the 
complementation. The drug is denoted as f(Ai

′

,Xi
′

) in the MCGCN. 
Moreover, each layer of the MCGCN is denoted as 

H(l+1)
i = σ

(

M̃i

′ − 1
2Ãi

′

M̃i

′ − 1
2H(l)

i Θ(l)
)

, (2)  

where Ãi
′

= Ai
′

+ IN is the adjacency matrix with self-attention added; 

M̃i
′

is the weight matrix of Ãi
′

, where M̃i
′

[j, j] =
∑

kÃi
′

[j,k]. H(l)
i and Θ(l) 

are the convolution signals and filter parameters of layer l; and σ(▪) is 
the activation function, which is set to ReLU(▪) = max(0, ▪). We further 
denote the first Di rows of H(l)

i as H(l,α)
i and the remaining (D − Di) rows as 

H(l,β)
i to obtain the propagation function of MCGCN between the layers: 

H(l+1,α)
i = σ

((

(M̃i + MB
i )

− 1
2Ãi(M̃i + MB

i )
− 1

2H(l,α)
i

+ (M̃i + MB
i )

− 1
2Ãi(M̃

c
i + MBT

i )
− 1

2H(l,β)
i

)

Θ(l)
)

.

(3)  

3.2.2. Transformer network 
The transformer network [37] is based on an attention mechanism 

and contains both an encoder and a decoder. In DTI prediction, the 
transformer network extracts additional features. Therefore, only the 
encoder part of the transformer network is used, as shown in Fig. 3. We 
have improved the multi-headed attention mechanism in the encoder. 
The drug feature information from different hidden layers of the MCGCN 
is processed using different multi-headed attention mechanisms. In the 
transformer network, we use two multi-headed attention modules with 
different heads, 4 and 6. The feature vectors processed by the 
multi-headed attention mechanism are connected by the concat opera-
tion and fed to the layer normalization part, then the fully connected 
forward neural network. 

In the transformer network, the attention functions Q, K and V, 
represent the query, key, and value, respectively. The multi-headed 
attention mechanism projects Q, K and V, undergo different linear 
transformations, obtain the representation results within each attention 
module by splicing different attention results and then obtain the final 
result by splicing different attention module representation results. The 
formula is expressed as follows: 

MultiHeadj(Q,K,V) = Concat(head1,…, headi), (4)  

AllMul = Concat(MultiHead1,…,MultiHeadj), (5)  

where AllMul represents the concatenation of vectors from different 

attention modules, i denotes the number of heads in each attention 
module, and j represents the number of multi-headed attention modules, 
set to 2. 

In addition to the multi-headed attention module, each encoder layer 
contains a fully connected feedforward network and a two-layer linear 
transform. The two-layer linear transform uses the ReLU activation 
function. 

FFN(x) = max(0, xW1 + b1)W2 + b2. (6)  

3.3. Target embedding 

We use CNN capture to extract the residue information from the 
target point sequence and the feature information from the target point. 

The structure of the target point feature extraction module is shown 
in Fig. 4. The target point sequence goes through the embedding layer to 
get the embedding matrix representation of the sequence. The length of 
the target point sequence is filled with empty labels if it is smaller than 
the length of the embedding matrix. We use convolution kernels of 
different sizes to convolve the target sequence embedding matrix. The 
size of the convolution kernel is 10, 15, and 20, respectively, and the 
step size is 1. From the jth amino acid to the (j + WS) amino acid, it can 
be defined as 

(x ∗ w)j =
∑ES

a=1

∑WS− 1

b=0
wa,bxa,j+b, (7)  

where WS is the size of the convolutional kernel. After each convolu-
tional layer, we use the ELU activation function. 

σ(α, x) =
{

σ(ex − 1) x < 0
x x ≥ 0 . (8) 

Finally, to extract the most important local features, we perform a 
global maximum pooling of the results after each convolution, defined 
as 

MaxPooling(EPk) = max((x ∗ w)j), (9)  

where j contains all the convolution results of the embedding matrix of 
the target sequence Pk. After maximum pooling, we extract the features 
of the interacting amino acids in the sequence. Finally, the result after 
maximum pooling is fed to the fully connected layer to obtain the 
embedding representation of the target sequence. 

3.4. Prediction module 

We use a concatenation operation to merge the embedded repre-
sentation of the drug molecule structure and the target sequence. The 
merged vector representation is then fed into the constructed fully 
concatenated layer along with the original label to predict drug-target 
interaction. 

In the DeepMGT-DTI model, the loss is calculated using a binary 
cross-entropy function. 

J(W, b) = −
1
n

∑n

i
[yilog ŷi + (1 − yi)log(1 − ŷi)]. (10) 

To prevent overfitting, we optimize the loss function with the L2 
parametrization. 

JL2(W, b) = J(W, b) + λ
∑L− 1

l=1
Wl

2. (11)  

4. Experiments and results 

4.1. Dataset 

The data used in the experiments includes drug and target data, se-
quences representation of the targets and SMILES sequences of the 
drugs. The drug and target data with DTI relationship were extracted 
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from Tang et al. [36] and the DrugBank database [44]. The sequences 
representation of the target and SMILES sequences of the drugs are ob-
tained from KEGG database [20] and PubChem database [39], respec-
tively. After we removing the DTI data with missing sequence 
representations, 12,496 drug molecular structures, 5,462 target se-
quences and 21,158 DTI data were obtained, as shown in Table 1. We 
randomly constructed negative examples in the ratio of 1:2 (positive 
examples to negative examples) and added them to the data. The 
training and test sets of the experiments in this paper were divided in an 
8:2 ratio. 

4.2. Experimental settings 

We used DTI data related to Delta variants and Alzheimer’s disease 
from the PubChem database in our case study. We used an NVIDIA 
GeForce RTX 3090 graphics card with 24 GB of RAM for training. The 
weights were updated using the Adam optimizer with an optimized loss 

Fig. 4. Target embedding structure.  

Table 1 
Statistics of the dataset.  

Nodes Name Number DTI Type Number 

Drug 12,496 Positive (known) 21,158 
Target 5,462 Negative (unknown) 42,316 
Total 17,958 Total 63,474  

Table 2 
Model experimental parameters.  

Experimental parameters Size 

epoch 150 
Batch size 32 
learning rate 0.000 1 
Decay rate 0.000 1 
dropout size 0.1 
CNN input size 1,500 
CNN filters 128 
CNN windows size 10,15,20 
GCN input size 75 
Transformer MultiHead Attention Numbers 2  
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function. The experimental model parameters are shown in Table 2. 

4.3. Evaluation metrics 

We chose four metrics to evaluate the effectiveness of the model 
comprehensively: the area under the ROC curve (AUC), area under the 
PR curve (AUPR), F1, and accuracy (ACC). We also used the sensitivity 
(Sen), specificity (Spe), and precision (Pre) metrics to evaluate the 
performance of the model more comprehensively. The F1, ACC, Sen, Spe 
and Pre are defined as follows, 

F1 =
2TP

2TP + FP + FN  

ACC =
TP + TN

FP + FN + TP + TN  

Sen =
TP
P  

Spe =
TN
N  

Pre =
TP

TP + FP  

where TP and TN are the number of drug-target with interaction and 
drug-target without interaction that were successfully identified, 
respectively. FP(FN) represents the number of drug-target with 
(without) interaction examples that are incorrectly identified. P(N) 
represents the number of drug-target with (without) interaction 
examples. 

4.4. Experimental results 

4.4.1. Comparison with existing methods 
To verify the performance of the DeepMGT-DTI model, we compared 

the proposed model to two machine learning models: Random Forest [3] 
and SVM [10], and five SOTA deep learning models: Deep DTA [30], 
Deep DTI [43], Deep Conv-DTI [23], TransformerCPI [7] and ML-DTI 
[45]. We applied these comparison methods to the dataset in the 
study and modified some parameters of the models. The obtained 
experimental results are shown in Table 3. The bold value indicates the 
best performance. 

The experimental results show that the ML-DTI and DeepMGT-DTI 
models outperformed the Deep DTA, Deep DTI, Deep Conv-DTI and 
TransformerCPI models for each evaluation index. This is because the 
Deep DTA, Deep DTI, Deep Conv-DTI and TransformerCPI models 
focused on the sequence structure of the target. To a certain extent, the 
capture of drug molecular features was neglected. However, the ML-DTI 
and DeepMGT-DTI models focused more on mining drug molecule in-
formation while capturing the sequence features of the target. Thus, 
more feature information in the data was captured, and the performance 
of the models was improved. By comparing the results of the Deep DTA, 
Deep DTI, and Deep Conv-DTI models, it can be seen that the Deep Conv- 
DTI model achieved the best experimental results. This is because Deep 

DTI uses the physicochemical properties in the whole target sequence 
for characterization. The entire protein sequence contains many sub-
sequences or structural domains that are not involved in the interaction 
with the compound. Deep DTA is designed and optimized for specific 
proteins. The performance is not suitable for target data with multiple 
classes of proteins. 

On the contrary, the Deep Conv-DTI model effectively extracts the 
features of target sequences by extracting the key information of resi-
dues in the target sequences and achieves better modeling results. By 
comparing the results of the ML-DTI and DeepMGT-DTI models, this can 
be clearly seen. The results of the AUC, F1, and ACC evaluation indexes 
of the DeepMGT-DTI model were better than those of the ML-DTI model. 
Based on mutilhead attention and position-aware attention, ML-DTI uses 
a mutual learning mechanism to bridge the gap between the drug 
encoder and target encoder. DeepMGT-DTI captures the molecular 
structure of the drug compounds by a transformer network incorpo-
rating multilayer graph information. In contrast, ML-DTI learns more 
the feature information of drugs and targets from a global perspective, 
and uses probability maps to effectively filter important features. 
Therefore, ML-DTI achieved the highest average AUPR (AUPR =
77.63%) of the DTI prediction experiments, which is 0.5% higher than 
that of DeepMGT-DTI. 

4.4.2. Ablation experiments 
To verify the validity of each module of the model, we designed and 

conducted ablation experiments, and the results are summarized in 
Table 4. The bold value indicates the best performance. 

Effectiveness of MCGCN. As shown in Table 4. MCGCN can further 
improve the performance by (1.2%, 2.3%, 2.4%, 0.2%) on AUC, AUPR, 
F1 and ACC. Based on MCGCN, our model learns the atomic information 
and the interaction information between atoms in the drug molecule 
structure map. It can be concluded that MCGCN effectively retain the 
information of drug molecules. This is why MCGCN can improve the 
prediction performance for DTI. 

Effectiveness of Transformer network. As shown in Table 4, 
Transformer network contributes to a performance improvement of 
around (1.2%, 2.3%, 2.5%, 2.1%) on AUC, AUPR, F1 and ACC. This 
result shows that Transformer network extracts the feature information 
from MCGCN and improves the prediction performance of DeepMGT- 
DTI. 

Effectiveness of multi-head self-attention. The multi-head self- 
attention module brings substantial improvements (1.7%, 4.2%, 2.0%, 
2.2%) on AUC, AUPR, F1 and ACC. The improvement is especially sig-
nificant on AUPR. This is consistent with our expectation that multi- 
head self-attention module not only preserves the feature information 
of MCGCN to the greatest extent, but also extracts the missing infor-
mation in the hidden layer of MCGCN. It effectively overcome the 
deficiency of graph neural network for learning edge features and 
improve the prediction performance of the model. 

Robustness of imbalanced data. To verify the robustness of the 
DeepMGT-DTI model on imbalanced data sets, we expand the test data 
in different ratios (positive sample: negative sample = 1:2, 1:5, 1:10 and 
1:20) while maintaining the balance of the training data. The experi-
mental results are shown in Table 5. The results shows that the 
comprehensive performance of DeepMGT-DTI is less affected by the 
class imbalance, while AUC and ACC show an increasing trend with the 
expansion of the sample ratio. 

4.5. Example of drug prediction 

To validate the model’s effectiveness for drug repositioning, the 
DeepMGT-DTI model was used to find therapeutic drugs for COVID-19. 
The Delta variant of COVID-19 currently covers 130 countries, is 55%– 
90% more infectious than previous COVID-19 variants, and 30%–100% 
more infectious than the Alpha variant in several countries, including 
the US. The Dleta target is identifyied as the major target of COVID-19 

Table 3 
Comparison of DTI prediction results of DeepMGT-DTI and baseline models.  

Model AUC AUPR F1 ACC 

Random Forest [3] 58.62 49.68 60.06 66.83 
SVM [10]) 60.62 53.36 62.82 67.93 
Deep DTA [30] 75.96 63.71 71.95 79.81 
Deep DTI [43] 79.39 70.04 72.86 80.33 
Deep Conv-DTI [23] 86.10 68.35 72.36 80.68 
TransformerCPI [7] 86.69 74.39 75.66 83.26 
ML-DTI [45] 88.02 77.63 77.10 83.34 
DeepMGT-DTI 90.24 77.11 79.31 85.15  
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by Bernal et al. [26]. Thus, the rapid discovery and identification of 
drugs that effectively inhibit the Delta variant are urgently needed to 
control the pandemic. In this study, information about Delta targets was 
extracted from the PubChem [39] database. The DeepMGT-DTI model 
was used for the prediction of potential therapeutic drugs. The results 
are shown in Table 6. 

In the experimental results, four of the top five drugs, including 
Tramadol [14], were clinical treatments for COVID-19 or had literature 
support for inhibition of COVID-19. Tramadol [14], Amitriptyline [5], 
and Dextromethorphan [33] all had Delta targets with close in-
teractions. Dexamethasone [32] and Dextromethorphan [33] are widely 
used in the clinical treatment of COVID-19 and have successfully alle-
viated the complications of COVID-19. Tramadol can increase antioxi-
dant enzymes, superoxide dismutase, and glutathione peroxidase. It also 
reduces the effects of malondialdehyde, thus protecting COVID-19 pa-
tients from disease complications [14]. It has been shown that treating 
cells with different concentrations of Amitriptyline reduces the chance 
of cells being infected by 90%. This provides the basis for the use of 
Amitriptyline for COVID-19 treatment [5]. In order to demonstrate the 
distinguishing feature of DeepMGT-DTI, we used DeepConv-DTI [23] 
method to compare with our model in the COVID-19 potential 

therapeutic drugs prediction experiments. The results showed that the 
top 5 drugs predicted by DeepConv-DTI hit two COVID-19 therapeutic 
drugs, less than the four drugs of our method. This is because that 
DeepMGT-DTI represents SMILES sequences as a graph, effectively 
extracting the information of interactions among atoms in drug mole-
cules by using MCGCN and Transformer networks. 

Except for COVID-19, we also predicted potential therapeutic drugs 
for Alzheimer’s disease. In the experiment, we selected apolipoprotein E 
closely related to Alzheimer’s disease as targets, and searched for cor-
responding acting drugs in KEGG database and PubChem database to 
construct DTI data. Appropriate negative examples were selected for 
samples expansion. Among the top 5 predicted drugs, Rivastigmine 
tartrate and Memantine hydrochloride have been used in the clinical 
treatment of Alzheimer’s disease. 

5. Conclusion 

This study proposed a transformer network with fused graph infor-
mation for predicting DTIs. The DeepMGT-DTI model takes the molec-
ular structure map of a drug and the sequence structure of a target as 
inputs. A transformer network extracts the features of the drug with 
fused graph information, and the prediction results are output. The 
experimental results indicated that the improved transformer network 
fused the feature information between different layers in the graph 
convolutional neural network, which compensates for the lack of 
learning of side features by the graph convolutional neural network. The 
DeepMGT-DTI model was also used to predict the therapeutic drugs for 
COVID-19, and four of the top five recommended drugs, including 
Tramadol, were found to have inhibitory effects on COVID-19. The re-
sults indicate the scalability of the model. In the future, we will further 
improve the model’s generalization by incorporating more drug-target 
information and predicting potential therapeutic agents for more dis-
eases (e.g., diabetes) to enhance the drug development process and 
reduce its cost. 
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Table 4 
Results of ablation experiments on DTI prediction. The “w/o” indicates “without”.  

Model AUC AUPR F1 ACC Sen Spe Pre 

w/o MCGCN and Transformer 86.10 68.35 72.36 80.68 76.35 81.62 70.26 
w/o Transformer 87.36 70.69 74.78 80.89 78.66 83.08 74.34 
w/o Multi-Head Self-attention 88.53 72.97 77.26 82.96 81.50 84.90 74.88 
DeepMGT-DTI 90.24 77.11 79.31 85.15 82.17 86.73 76.65  

Table 5 
Experimental results of DeepMGT-DTI on an imbalanced dataset.  

Positive: Negative AUC ACC Sen Spe 

1:2 90.24 85.15 82.17 86.73 
1:5 91.88 87.79 80.35 89.32 
1:10 92.82 88.43 83.98 88.88 
1:20 92.95 88.98 83.53 89.29  

Table 6 
The top 5 drugs related to COVID-19 recommended by DeepMGT-DTI.  

No Compound 
CID 

Drug Name Evidence 

1 33 741 Tramadol Tramadol could protect the COVID-19 
patient from disease complications by 
increasing the antioxidant enzymes 
superoxide dismutase and glutathione 
peroxidase while diminishing 
malondialdehyde [14]. 

2 5311 356 Pholcodine None. 
3 5743 Dexamethasone A recent clinical trial has revealed that 

dexamethasone and convalescent 
plasma treatment can reduce mortality 
in patients with severe COVID-19 [32]. 

4 2160 Amitriptyline Treating volunteers with a low dose of 
amitriptyline prevents infection of 
freshly isolated nasal epithelial cells 
with a pp-VSV-SARS-CoV-2 spike [5]. 

5 5360 696 Dextromethorphan In this scenario, we undertook a 
repurposing project of common cough 
and cold drugs—Dextromethorphan, 
Prednisolone, and Dexamethasone—to 
explore their anti-Covid property. 
Individual and sequential docking 
study with MD simulation and RMSD 
and RMSF analyses revealed that a 
combination of these three considered 
ligands may prove to be a successful 
therapy against COVID-19 [33].  
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