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The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insur-
mountable damage both to the human lives and global economy. There is an immediate need for identification
of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing
to identify the best drug combination to address the disease. In this review, an attempt has been made to
understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against
SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-
CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being
carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts
from the scientific community to effectively address the issue and prevent further loss of human lives and

health.
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1. Introduction

The advent of the devastating COVID-19 pandemic in
2019 has left more than 5.5 million people infected and
more than 340,000 deaths all over the world (Zhou et al.
2020a; https://www.who.int/emergencies/diseases/novel-
coronavirus-2019). These numbers demonstrate the
large-scale damage this virus has caused on a global scale.
COVID-19, as the World Health Organization (WHO) has
designated this disease, is caused by the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
(Du  Toit 2020) (https://www.who.int/emergencies/
diseases/novel-coronavirus-2019/technical-guidance/
naming-the-coronavirus-disease-(covid-2019)-and-the-
virus-that-causes-it). Since there is no absolute definitive
drug or vaccine available that can contain the spread of
this deadly virus, the management strategy for the disease
is primarily aimed at treating the symptoms (Jin et al.
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2020). Lack of treatment options has only led to an
increased number of fatalities due to the disease (Abbas
et al. 2020; Down et al. 2020).

Academic labs and drug discovery organizations
world over are working tirelessly to evaluate compounds
that can inhibit the spread of SARS-CoV-2 in humans.
To achieve this it is essential to first identify drug targets
and subsequently identify and evaluate compounds and
biologics that can effectively engage these targets and
inhibit the spread (Alexander et al. 2020a, b; Dong et al.
2020). However, such efforts can be arduous and
involve a painstakingly long process. Therefore in par-
allel, we should also evaluate known antivirals and
repurpose them either as single agents or in combina-
tions so that they can effectively contain the spread of
the virus (Ahn et al. 2020; Hijikata et al. 2020; Jeon
et al. 2020). In order to do this, global concerted efforts
are required, and rapid clinical trials need to be con-
ducted to evaluate the role of potential candidate com-
pounds in this particular disease and population setting.

Since the onset of this century, Coronaviruses have
created a pandemic-like situation at least at two earlier
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events. First was the Severe Acute Respiratory Syn-
drome (SARS) pandemic at the beginning of the 21st
century and then the Middle East Respiratory Syn-
drome (MERS) outbreak almost a decade before (Al-
Omari et al. 2019; Centers for Disease and Prevention
2013; Holmes 2003). Both these pandemics were
caused by viruses belonging to the Coronavirus family
of viruses (Benvenuto ef al. 2020). In fact, the symp-
toms of SARS and the current COVID-19 pandemic
patients are quite similar, reaffirming the fact that both
these viruses are quite similar in their genomic con-
stitution and mode of transmission (Kandeel et al.
2020; Kumar et al. 2020; Xie and Chen 2020a).
However, since the SARS epidemic, the SARS-CoV-2
virus has undergone mutations (Becerra-Flores and
Cardozo 2020; Biswas et al. 2020; Bzowka et al. 2020;
Poterico and Mestanza 2020; Yin 2020) and thus the
drugs developed against the SARS virus might not very
effective in containing the virus spread. In order to
understand the drug targets and appreciate the ongoing
efforts directed towards the identification of therapies
against SARS-CoV-2, it is important to understand the
virus biology, mode of transmission and replication
cycle. This is especially important since any effective
therapy against SARS-CoV-2 should preferably target
the stages in the virus life cycle.

In this review, the potential drug targets for drug
candidates against SARS-CoV-2 are discussed and an
overview of the current status of drug development
against SARS-CoV-2 infection is provided. The
equally important efforts towards vaccine development
are excluded from this review, as this topic is covered
in a separate in-depth review (Mukherjee 2020).

1.1 Classification of coronaviruses

SARS-CoV-2 is a member of the Coronaviruses (CoV)
class of viruses. CoV are essentially positive-stranded
RNA viruses and display a crown-like appearance on
the surface when observed under an electron micro-
scope. It is due to the presence of this ‘crown-like
structure’ that this class of viruses is called Coron-
aviruses (coronam being the Latin term for crown)
(Alanagreh et al. 2020; Rehman et al. 2020). Struc-
turally, these ‘crown-like structures’ are glycoprotein
present on the viral envelope which facilitate virus
entry in the host cells (Coutard et al. 2020). There are
four known subfamilies of coronaviruses, classified as
Alphacoronavirus, Betacoronavirus, Gammacorona-
vorus and Deltacoronavirus (Li et al. 2020a). Although
the zoological evolution of coronaviruses is still an
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active research subject, it is widely accepted that
Alpha- and Betacoronaviruses are predominant in bats
and rodents whereas Delta- and Gammacoronavirus
gene sources are the avian species (Brussow 2020a;
Cascella et al. 2020; Coronaviridae Study Group of the
International Committee on Taxonomy of 2020).

The causative virus of COVID-19 pandemic, SARS-
CoV-2 virus is a part Betacoronavirus subfamily and is
believed to have crossed the species barrier to infect
humans due to zoonotic transmission (Mackenzie and
Smith 2020; Zimmermann and Curtis 2020). The
hallmark of coronavirus transcription is the production
of multiple sub-genomic RNAs containing sequences
corresponding to both genomic ends (Song et al. 2020).
These viruses utilize RNA-dependent RNA synthesis
to generate mRNAs transcribed by the host genome.
Genetically, SARS-COV-2 is a positive-sense, single-
stranded RNA virus with a genome size of 30 kb which
encodes for two Open Reading Frames (ORFs) (Cer-
aolo and Giorgi 2020; Dabravolski and Kavalionak
2020; Yang et al. 2005). These ORFs are designated as
la and 1b, and code for protease 3CIPro and PLpro.
These proteases then cleave the polypeptide into 16
non-structural proteins (Nsp) which are essentially viral
enzymes involved in replication and packaging of the
virus within the host cell and four structural proteins
that contribute to the outer structure of the virus (Jean
et al. 2020; McKee et al. 2020; van Boheemen et al.
2012). Like other Coronaviruses, the outer surface of
the SARS-CoV-2 virus is made of Spike (S) protein,
envelope (E) protein, membrane (M) protein and the
Nucleocapsid (N) protein. The M and E proteins are
involved in virus morphogenesis and assembly. The
Spike protein (S) is at the forefront of infection and
interacts with the ACE-2 receptor on the host cell
surface thereby promoting virus-cell membrane fusion
during initiation of viral infection. The Envelope
(E) and Membrane (M) protein constitute the cover
outside the viral genetic material. Inside the shell of M
and E proteins is the RNA which is guarded by the
Nucleocapsid protein (Glebov 2020; Nieto-Torres ef al.
2011; Nieto-Torres et al. 2015).

1.2 Molecular basis of disease transmission

It is a well-accepted fact that the SARS-CoV-2 trans-
mission is facilitated by respiratory secretions in the form
of droplet/acrosol when a person comes in close contact
with the infected person (Guo et al. 2020a, b). Recent
reports suggest that the infection can also spread through
stool, urine, and respiratory secretions (Casanova et al.
2010; Ding et al. 2020; Wang et al. 2020b).
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As soon as the SARS-CoV-2 virus enters the human
body, it establishes a cycle of replication by binding to
cell types such as enterocytes and pneumocytes. This
virus can also infect tubular renal epithelial cells (Bao
et al. 2020), immune cells (Annweiler et al. 2020) and
cerebral neurons (Bilinska et al. 2020; Xie and Chen
2020b). The Spike protein present on the surface of
SARS-CoV-2 is responsible for the primary establish-
ment of host-protein interaction. The Spike protein
binds to the Angiotensin-converting enzyme-2 (ACE-
2) receptor present on the host cell plasma membrane
(Annweiler et al. 2020; Hasan et al. 2020b). Post
receptor recognition, the viral genome including the
Nucleocapsid is released into the cytoplasm of the host
cell as shown in figure 1. As mentioned above, the
SARS-CoV-2 viral genome has two ORFs: 1a and 1b.
These ORFs translate to two polypeptides (PP) Ppla
and Pplb which in turn hijack the host cellular ribo-
somes for their own translational process, thereby
making a replication-transcription complex (Bojkova
et al. 2020; Dong et al. 2020).

The polypeptide is processed by proteases and this
processing results in 16 Non-Structural Proteins
(NSPs), and each of these has its own specific function
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in replication and transcription (Hillen et al. 2020; te
Velthuis et al. 2012). NSP1 and 2 are involved in the
suppression of host gene expression. NSP5 is involved
in replication whereas NSP4 and 6 are transmembrane
proteins (Kandeel er al. 2020; Stobart et al. 2013;
Zhang et al. 2020b). NSP7 and 8 act as primases, while
NSP9 is an RNA-binding protein. The dimeric form of
NSP9 is critical for viral infection, and disruption of
this dimerization could be a potential strategy to inhibit
the infection. NSP10 is involved in replication and
NSP12 is an RNA-dependent RNA polymerase.
NSP12 has helicase activity, NSP14 demonstrates
exonuclease activity, and NSP15 has endoribonuclease
activity, while NSP16 possesses methyltransferase
activity (Athmer et al. 2017; Hillen et al. 2020; Hu
et al. 2009; Jia et al. 2019; Mirza and Froeyen 2020;
Neogi et al. 2020).

These NSPs with the help of host machinery trans-
late the RNA coding for the viral Spike, Envelope,
Nucleocapsid and Membrane proteins. These proteins
then enter the endoplasmic reticulum (ER) — golgi
apparatus and are involved in viral assembly and
packaging. The viral genome binds to the Nucleocapsid
(N) protein and results in the formation of the
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Figure 1. Stages of SARS-CoV-2 life cycle. Along with the stages arrows point to drugs and candidate drugs active against

the drug targets.
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ribonucleoprotein complex (RNP) (Cong et al. 2017,
Gui et al. 2017; Narayanan et al. 2008; Narayanan
et al. 2015).

As depicted in figure 1, Coronaviruses exploit the
host’s endosomal pathway to gain entry in the host cell.
As such the virus entry into the host cell is an energet-
ically unfavorable process (Brielle et al. 2020), but
viruses are able to overcome this barrier due to the low
pH environment and pH-dependent endosomal cysteine
protease (Du et al. 2020; Simmons et al. 2011; Zhang
et al. 2019). Other host proteases, such as transmem-
brane protease serine 2 (TMPRSS2) and TMPRSS11D
(also known as airway trypsin-like protease), are
involved in the processing of the Spike protein into its
constituent subunits S1 and S2 and promote virus entry
at the plasma membrane of the host (Iwata-Yoshikawa
et al. 2019; Maggio and Corsini 2020; Matsuyama et al.
2010). Agents that modify the pH or inhibit these pro-
teases can be potential drug targets for anti-coronavirus
therapy (Baglivo et al. 2020; Bein et al. 2020). Finally,
the virus particle is assembled, and it again exploits the
host’s exosomal pathway and fuses with the plasma
membrane resulting in the release of virus particles into
the extracellular region. Upon infection, the viral load
increases in the host body and this results in an increase
in pro-inflammatory cytokines (Alosaimi et al. 2020;
Conti et al. 2020; Magro 2020) and chemokines (Alo-
saimi et al. 2020; Channappanavar and Perlman 2017,
Gralinski et al. 2018; Skinner et al. 2019), which have
the potential to damage the lung tissue(Tanaka et al.
2013), leading to deterioration of lung function, and
finally lung failure (Brussow 2020Db).

2. Approaches for drug discovery targeting SARS-
CoV-2

Antiviral drugs targeting the SARS-CoV-2 can be clas-
sified into two major classes, with the first group tar-
geting virus—host interactions or inhibiting viral
assembly (Zhou et al. 2020b). The other approach would
include drugs that modulate broad-spectrum host innate
immune responses or interfere with signaling pathways
involved in viral replication. These drugs may be capable
of engaging host receptors or proteases utilized for viral
entry or may impact the endocytosis pathway (2020;
Channappanavar and Perlman 2017; Dong et al. 2020;
Hijikata et al. 2020; Jeon et al. 2020; Liu et al. 2020b;
McKee et al. 2020; Sanders et al. 2020).

Essentially, three general approaches can be utilized
for screening of antiviral compounds capable of
inhibiting the COVID-19 infection:
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2.1 Repurposing of antiviral compounds

The first approach is to check existing antiviral com-
pounds and molecules and estimate their effect on viral
replication and packaging. Molecules like interferon
alpha, beta and gamma, ribavirin and chemical inhibi-
tors of cyclophilin 8 (Ma-Lauer et al. 2020; Zhang
et al. 2020a) can be evaluated for their antiviral
activities. These known antivirals have a strategic
advantage since they are in active clinical use and their
pharmacokinetic and pharmacodynamic properties are
well studied. On the flip side, such drugs might lack
specificity against SARS-CoV-2, and thus may have
severe adverse effects (Ahn et al. 2020; Busquet et al.
2020).

2.2 High-throughput screening of compounds

The second approach involves screening of chemical
libraries that constitute compounds targeting tran-
scriptional machinery of various cell lines. High-
throughput screening technology has the potential to
screen large libraries of ‘drug-likely’ chemical com-
pounds for chemical entities having antiviral effects.
Even libraries of existing drugs can be screened to
support drug repurposing efforts, thereby leading to the
identification of new functions of many known drug
molecules (Berdigaliyev and Aljofan 2020; de Wilde
et al. 2014; Dyall et al. 2014; Kindrachuk et al. 2015;
Lu et al. 2014). Marketed drugs like Lopinavir/riton-
avir which was earlier intended to be used in anti-HIV
therapy and was subsequently used to treat SARS have
emerged as a result of the successful execution of such
screening programs (Chu et al. 2004; Cvetkovic and
Goa 2003). However, a serious disadvantage of this
approach is that the ‘hits’ obtained from such screen-
ings may have immunosuppressive or cytotoxic effects
at higher concentrations. Another disadvantage is that
the half-maximal effective concentration (EC50) of
drugs required to be effective against the SARS-CoV-2
infection might exceed the highest serum concentration
(Cmax) levels that can be achieved by pharmacological
dosing (Mirza and Froeyen 2020).

2.3 Inhibition of SARS-CoV-2 replication
mediated by siRNA

The third approach could involve the development of
specific novel agents resulting from strong basic
research around the genomic and biophysical
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understanding of the SARS-CoV-2 life cycle. siRNA
molecules or inhibitors that have the capability to
inhibit specific viral enzymes involved in viral repli-
cation cycle, or monoclonal antibodies targeting the
host receptor ACE-2 could be the result of such an
endeavor (Hasan et al. 2020b). Such an approach has
the potential to return a large number of virus-specific
promising therapies against the SARS-CoV-2 virus.
One of the major hurdles in such therapies is the
specific drug delivery of these molecules and a lack of
understanding of siRNA-based therapy (Lesch et al
2019; Sohrab et al. 2018).

3. Approaches for drug repurposing

Due to the immense financial implications, resource
implications and time implications involved in novel
drug discovery process, pharmaceutical companies and
researchers in the field are inclining towards and rely-
ing on ‘Drug Repurposing’ efforts (Ashburn and Thor
2004). As the name suggests, using this approach, a
known drug or an investigational drug candidate drug
is studied for new uses that are beyond their scope of
original intended medical indication. Some researchers
and institutions also term ‘Drug repurposing’ as Drug
Repositioning, Drug re-profiling or Drug re-tasking
depending on the final outcome of studies (Scannell
et al. 2012).

This strategy can considerably lower the risk of
failure of investigational drugs since the toxicity profile
of the drug is already well evaluated and in most cases
its adverse effects are well documented (Pammolli
et al. 2011). More importantly, this strategy can help
save time involved in Drug development since the
preclinical testing, safety assessment and even formu-
lation development has already been completed for
repurposed drugs (Nosengo 2016). Also, since the
drugs have undergone clinical trials earlier, repurposed
drugs can potentially skip phases 1 and 2 trials, and
based on therapeutic indication and adverse effect
profile, repurposed drugs can be considered directly for
large scale phase 3 trials (Breckenridge and Jacob
2019). Another important use of repurposed drugs is in
drug combination therapy as the use of drugs can be
modulated by effective novel drug combinations
(Urquhart 2018). Also, initial drug repurposing exper-
iments do not require elaborate laboratory settings and
most often new indications and combinations can be
postulated using in-silico approaches (Hurle 2013). At
the same time, this exciting approach suffers from
some pitfalls and cautious consideration is required
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before positioning a drug for a new therapeutic indi-
cation. Mostly drug repurposing studies are driven by
drug targets and identified drug targets might demon-
strate polypharmacology thereby leading to adverse
side effects (Aguilera et al. 2019; Cheng 2019;
Karuppasamy et al. 2019). Also in experimental
screening studies, usually a higher dose is used and this
might lead to misidentification of a compound as active
while its corresponding pharmacological dose might be
toxic. At the same time the effective plasma concen-
trations of drugs might be higher than the maximum
tolerable pharmacological dose. M oreover, a substan-
tial structural modification of a drug might change its
toxicity profile thereby warranting fresh toxicity studies
(Colson and Raoult 2016; Strittmatter 2014).

Many pharmaceutical companies are still shy of
completely harnessing the potential of drug repurpos-
ing due to the attached intellectual property ‘burden’
and the associated costs (Farha and Brown 2019; Fetro
and Scherman 2020; Talevi and Bellera 2020; Yildirim
et al. 2016). Nevertheless, the drug repurposing
approaches can be broadly divided into two broad
categories: (1) the computational approach, here
bioinformatics tools are used to identify new indica-
tions for drugs already in use and the approach relies
on ‘Big data’ analysis and Artificial Intelligence (Al)
(Issa et al. 2020; Ke et al. 2020; Lee and Chen 2020).
(2) The experimental approach, this is a more tradi-
tional approach and relies on in vitro experiments to
postulate new applications of drugs (Cha ef al. 2018;
Martorana et al. 2016). Figure 2 shows a hierarchical
view of approaches being used for drug repurposing

3.1 Computational approach

Computational approaches for Drug repurposing are
largely data-driven and involve a systematic analysis of
gene expression, chemical structure, proteomic data or
electronic healthcare records. The most commonly
used computational approaches include Signature
matching (Koudijs er al. 2019), computational molec-
ular docking (Pinzi and Rastelli 2019; Trosset and
Cave 2019), Genomic association analysis (Cheng
et al. 2019; Nabirotchkin et al. 2020), Pathway or
network mapping (Infante et al. 2020; Zhou et al.
2020b) and retrospective analysis using electronic
health records of approved drugs (Karaman and Sippl
2019; Pereira et al. 2020; Shi et al. 2020b).

3.1.1 ‘Signature’ matching: Every drug or investiga-
tional drug candidate possesses some unique
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Approaches for Drug Repurposing
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Figure 2. Hierarchical view of approaches for drug repurposing.

characteristics or ‘signature’ like its transcriptomic
effect profile, structural or adverse effect profile and by
matching these characteristics/signatures with another
disease or drug, repurposing can be achieved (Karaman
and Sippl 2019; Koudijs et al. 2019). Using this
approach for drug repurposing researchers rely on
either drug—disease comparison or drug—drug compar-
ison. In the first case, ‘signatures’ of a particular drug’s
gene expression profile before and after treatment is
compared with the differential gene expression profile
obtained similarly by comparing profiles of healthy
with the diseased (Jhamb et al. 2019; Khosravi et al.
2019). One such drug repurposing example that has
taken this approach is the topiramate which is normally
used as an antiepileptic drug and acts as an agonist for
Gamma amino Butyric acid (GABA) activity (Dudley
2011; Dudley et al. 2011). Based on studies by Dudley
and co-workers using the drug-disease approach, it was
established that topiramate can also be used for
inflammatory bowel disease (IBD) as it had signatures
comparable to prednisolone, the treatment of choice for
IBD (Dudley 2011). The drug—drug similarity approach
identifies a common mechanism of action for drugs that
belong to different classes and are usually structurally
dissimilar (Bakal et al. 2019; Wu et al. 2019; Yang
et al. 2019).

3.1.2 Computational molecular docking: Computa-
tional molecular docking is an indispensable tool for
Drug repurposing activities (Chen et al. 2012; Cicaloni
et al. 2019). Here, by using structure-based computa-
tional strategy, binding efficiency is predicted between
the drug and the target molecule (Elfiky 2020). With

this method large- and small-scale screens can be
conducted with known drugs against a disease target
(Brindha et al. 2016; Kitchen et al. 2004). However,
this technique has its own limitations, such as, for
many targets 3D structure is not elucidated or there is a
lack of available screen-able macromolecular database
that can provide structural information for a varied
molecular class of drug (Xia 2017; Zhou et al. 2019).

3.1.3 Network mapping: Molecular Pathway or Net-
work mapping is one of the most commonly used
methods for drug repurposing. Many identified drug
targets are not directly druggable as their direct inhi-
bition might lead to severe adverse effects and thus
network mapping can inform about the upstream or
downstream druggable targets thereby enabling drug
repurposing (Oulas et al. 2019; Zhou et al. 2020b).
Based on Gene expression pattern and disease pathol-
ogy, drug and disease networks can be created using
network mapping tools (Gns et al. 2019; Janardhan
et al. 2018). Such maps and networks can open enor-
mous possibilities for drug repurposing.

3.2 Artificial intelligence and drug repurposing

Advances in Information technology with Artificial
Intelligence (Al) and ‘Big-data analysis’ are revolu-
tionizing drug repurposing efforts and studies (Mucke
2018). With the help of machine learning tools, com-
putational algorithms can be developed that can predict
new drug target engagement with far greater accuracy
than earlier used methods (Alvarez-Machancoses et al.
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2020; Kuang et al. 2019; Luscher Dias et al. 2020;
Nabirotchkin et al. 2020). Huge data generated by
High-throughput Next Gen Sequencing (NGS) from
numerous patients when combined with disease char-
acteristics and treatment options can lead to the iden-
tification of new disease biomarkers and drug targets
(Stupnikov et al. 2018; Zai et al. 2018). Al-driven
supervised machine learning algorithms can implement
multiomics and multitask learning to facilitate drug
response elicited by engagement of multiple drug tar-
gets (Nascimento et al 2019; Nath et al. 2018;
Saberian et al. 2019; Zhao and So 2019). The impact of
this technology can be appreciated by evaluating a
recent study where a computational methodology was
developed that can utilize heterogeneous data from
previously described Drug Target interactions to pre-
dict new interactions with even greater accuracy. The
methodology known as ‘deepDTnet’ can integrate
networks connecting multiple drugs with drug targets
and disease database with the help of deep learning (a
form of machine learning based on Al) (Brasil et al.
2019; Monteiro et al. 2020; Wen et al. 2017; Zeng
et al. 2020).

3.3 Drug repurposing in antiviral drug discovery

The approaches for drug repurposing can also be uti-
lized to scout for drugs that can be effective antivirals.
By screening the database of small molecules against
viral drug targets using computational methods, drugs
or molecules can be identified may possess antiviral
activity (Pizzorno et al. 2019). Essentially three dif-
ferent scenarios can be discussed to facilitate antiviral
drug repurposing: (1) Known target/new virus: In this
scenario, an established antiviral drug targeting a
specific protein/pathway is found to possess antiviral
activity against other viruses. Known viral RNA
polymerase Favipiravir and sofosbuvir were initially
developed for the treatment of Influenza virus and
Hepatitis C virus (HCV) infection and were repurposed
for treatment of Ebola virus (Bai and Hsu 2019; Du
et al. 2020; Johansen et al. 2015; Muthaiyan et al.
2020; Salata et al. 2019; Veljkovic et al. 2015) and
Zika virus infection (Abbasi 2016; Bernatchez et al.
2020; Montes-Grajales et al. 2020; Mumtaz et al.
2017). (2) Known target/new indication: In this sce-
nario, the pharmacological target is implicated to be
affected in a new pathogenic infection. In such cases,
drugs targeting these proteins can be repurposed as
effective antiviral agents. One such example is about
the repurposing of anti-cancer agent Imatinib. Cellular

Page 7 of 24 87

Abelson (ABL) kinase is the target of Imatinib and the
same was shown to be active against coronaviruses
(Ananthula et al. 2018; Coleman et al. 2016; Giuliani
et al. 2018). (3) New target/new indication: This sce-
nario occurs when an approved drug with a specific
target is found to target additional viral proteins or
targets. Many antimicrobial agents like teicoplanin
(Aziz et al. 2018; Zhou et al. 2016), ivermectin
(Chaccour and Rabinovich 2019; Rabinovich 2018),
itraconazole (Alhakamy and Md 2019; Pace et al
2016; Schloer et al. 2019; Tsubamoto et al. 2017) and
nitazoxanide (Cao et al. 2017; Rossignol 2016) were
also found to be active against some viral infections.

4. Lessons from SARS: pharmacological
interventions

Lessons from SARS and MERS epidemic can be used
to develop some therapies for SARS-CoV-2 infection
(Zumla et al. 2016). Previously used antiviral drugs
like oseltamivir, peramivir, zanamivir, ganciclovir,
acyclovir and ribavirin are not recommended for
COVI-19 treatment (Li et al. 2020c; Wang et al.
2020b). Also, systemic corticosteroid treatment such as
methylprednisolone is not appreciated as a treatment
option for SARS-CoV-2 infected patients (Veronese
et al. 2020). In such a scenario, given the similarity of
SARS-CoV and MERS virus along with the SARS-
CoV-2 virus, an insight into the treatment options
available for SARS and MERS could provide valuable
inspirations for Drug discovery and repurposing
(Zumla et al. 2016). However, for both SARS and
MERS, no specific treatment was recommended; rather
WHO recommended managing the disease based on
patients’ symptoms (Graham et al. 2013).

4.1 Ribavirin and corticosteroids

In the year 2003, the SARS pandemic, like COVID-19,
caught the world by surprise. Early days in the SARS
pandemic patients in Hong Kong and Canada were
treated with a combination of ribavirin and corticos-
teroids (Rainer 2004; Tsang et al. 2003). However,
subsequent reports indicated towards ribavirin’s high
rate of toxicity and lack of ability to control the
infection spread (Booth and Stewart 2005; Sung et al.
2004; Wong et al. 2003). Use of corticosteroid,
methylprednisolone is controversial as far as SARS
was concerned. In multiple cases, dose-related toxicity
was observed. The lower dose of methylprednisolone,
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250-500mg/day demonstrated some improvement on a
subset of critical SARS patients however a prolonged
usage in the absence of any specific antimicrobial agent
predisposed the patients to disseminated fungal infec-
tion (Chan et al. 2003a, b; Tsang and Seto 2004; Tsang
and Lam 2003) and avascular necrosis (Chan et al
2003a, b). Based on localized, single-center uncon-
trolled clinical studies, it was recommended that Cor-
ticosteroids should only be used as a ‘rescue therapy’
and not as a treatment as it might impair the host viral
clearance (Sung et al. 2004).

4.2 Interferons

Viral infections such as hepatitis B and C have been
successfully treated by Interferon treatment (Christian
et al. 2004). Since Interferon is also broad-spectrum
antiviral, it was used in some single-center, open-la-
belled, uncontrolled clinical settings against SARS. In
these small trials, patients were stable post-treatment
with Interferon in combination with corticosteroids.
The results pointed out that perhaps with interferon
treatment the lung deterioration can be delayed
(although this could not be proven statistically) (Zhao
et al. 2003). Also, post this treatment, improved oxy-
gen saturation levels and lower creatine phosphokinase
levels were observed in critically ill patients. However,
this warranted properly designed clinical trials globally
(Loutfy et al. 2003).

4.3 Ritonavir and lopinavir

A combination of viral protease inhibitor, ritonavir 400
mg and lopinavir 100 mg, when administered orally
with 12 h interval for 10 to 14 days as standard therapy,
yielded the most promising outcome in Hong Kong—
based clinical studies (Chan et al. 2003a, b). Here the
subjects showed a reduction in steroid dependency and
nosocomial infections. At the same time reduction in
viral load and concomitant increase in peripheral
lymphocyte count was observed. This combination
appears to be promising and even for COVID-19 as
well this combination is being tested in clinical trials.
However, some serious adverse effects were also
reported from patients undergoing treatment for SARS
infection with this combination. Subjects were
observed to suffer from pancreatitis, diarrhea, abdom-
inal pain and liver dysfunction among other associated
discomforts like abdominal pain, asthenia, headache,
nausea, insomnia and skin rash (Chu et al. 2004).
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5. Key CoV targets for drug development
and available therapies

As of date, no specific and definite antiviral drug is
available for the treatment of CoV-associated patholo-
gies (Barlow et al. 2020; Martinez 2020a; McKee et al.
2020; Wu et al. 2020a). However, some therapeutic
agents based on the biology of the virus and some
potential drug targets have been identified.

Since the onset of previous global coronavirus pan-
demics like MERS and SARS, considerable research
has gone into the search for suitable drug targets and
subsequent drug candidates (Lou et al. 2020). Based on
this and life cycle stages of SARS-CoV virus, the
therapies that have the potential to act on coronaviruses
can be divided into five broad categories/approaches:

(1) Inhibition of virus binding to the host receptor
by either chemical compounds or monoclonal
antibodies. These agents can block or effec-
tively engage the host’s cell surface receptor
thereby preventing virus binding and subse-
quent internalization (Li ef al. 2019; Salata et al.
2019; Shang et al. 2020; Tortorici and Veesler
2019).

(2) Target the viral endocytosis. This process enables
the virus to enter the host cell and release its
genetic material for further replication and there-
fore blocking virus-mediated endocytosis is a
logical target for antiviral therapy (Baglivo et al.
2020; Delvecchio et al. 2016; Glebov 2020;
Omotade and Roy 2019; Praveen et al. 2020).

(3) Neutralize the virus particle. This can be accom-
plished by the compounds and antibodies acting
on enzymes or functional proteins critical to virus
replication and multiplication (Algaissi and
Hashem 2020; Goo et al. 2020; Pinto et al
2020; Wang et al. 2020a; Wu et al. 2020b).

(4) Targeting the viral structural proteins like the
membrane, envelope and Nucleocapsid protein
thereby blocking virus repackaging (Hijikata
et al. 2020; Kato et al. 2019; Mirza and Froeyen
2020; Saha et al. 2020; Zhang et al. 2020b).

(5) Restoration of host’s innate immunity by the
agents capable of producing virulent factors
(Azkur et al. 2020; Casanova et al. 2020; Encinar
and Menendez 2020; Gemmati et al. 2020;
Mantlo et al. 2020; Tufan et al. 2020).

Table 1 summarizes the drug targets and com-
pounds active against SARS-CoV-2, their current
development status and the pros and cons of the
proposed therapy.
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Table 1. List of probable drug targets against SARS-CoV-2 and compounds/agents effective against these targets

Targeted viral

components Examples Mechanismofaction Status Pros Cons
Inhibition of SARS -CoV-2 fusion/entry
RBD of the SI REGN3051 Antibodies target the Preclinical Efficacy Narrow spectrum
subunit of S and RBD domain of the S1 demonstrated
REGN3048  subunit in vitro
mAbs
S2 subunit of S HR2P and P1 Antiviral peptides that Preclinical anti-HIV peptidel has Narrow spectrum
peptides inhibit fusion of S with been marketed
host cell receptor
TMPRSS2 Camostat TMPRSS?2 inhibitor that Marketed Promising results Broad spectrum.
Mesylate blocks the TMPRSS2- in vitro. Effect on Developed for therapy
entry pathway patients need to be against SARS
tested
Inhibition of endocytosis
Endosomal chloroquine  An antimalarial that Marketed Broad spectrum; No concrete clinical data
acidification sequesters protons in many SARS-CoV-2  to suggest efficacy
lysosomes to increase affected patients
the intracellular pH show good recovery
Clathrin- Oubain ATP1A1- binding Marketed  Active against May have risk of cardiac
mediated steroids; inhibits MERS-CoV toxicity
endocytosis clathrin-mediated
endocytosis
Inhibition of Viral Enzymes
3CLpro Lopinavir Inhibits 3CLpro activity =~ Marketed Broad spectrum Toxicity
Adverse impact on
immune system
PLpro GRLO0617 Inhibits PLpro activity Preclinical Narrow spectrum No animal or clinical data
available
RdRp Remdesivir ~ Nucleotide analogue; Marketed  Active against Side effects are common

Broad spectrum: many
viral infections, inhibits
viral RNA synthesis

SARS-CoV and
MERS-CoV at high
doses in vitro

and may be severe with
high dose regimens

Inhibition of Viral envelope (E), membrane (M), Nucleocapsid (N) and accessory proteins

Short chains of dsRNA
that interfere with the
expression of SARS-
CoV proteins

Impairs viral replication

E and M Protein siRNA

N Protein Pj34

Induces membrane
damage

Membrane and  Lj001 and
Accessory JL103
proteins

Preclinical

Preclinical Narrow spectrum

Preclinical Broad spectrum

Optimal delivery method
in humans uncertain

Promising in vitro
studies.

Optimal delivery method

Effective in vitro and  in humans is uncertain

in animal studies

Anti-CoV activity yet to
be demonstrated

Unstable physiologically

and photo dependent

Also, the present development stage as well as the pros and cons of therapies are listed

5.1 Inhibition of SARS -CoV-2 fusion/entry

SARS-CoV-2 utilizes the spike protein present on the
viral surface to gain entry into the host cells. The
protein—protein interaction that takes place between the
subunits of the spike protein and the active site of the

ACE-2 receptor can be targeted to identify an effective
treatment strategy (Wrapp 2020). Like other viruses,
the coronaviruses also outsmart drugs targeted against
them by constantly mutating the active site of spike
protein (Becerra-Flores and Cardozo 2020; Chang
et al. 2020; Goo et al. 2020; Qing et al. 2020). As a
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result, the SARS-CoV-2 spike protein recognizes the
ACE-2 receptor more efficiently than the previously
studied SARS virus (Albini et al. 2020; Chen et al.
2020; Dediego et al. 2008; Hasan et al. 2020a;
Mathewson et al. 2008). Specifically, the Receptor
Binding Domain (RBD) of the spike protein is a critical
target for antibody-mediated disruption of binding.
Many antibodies demonstrating the ability to disrupt
this binding are in preclinical stages of development
(Chen et al. 2020; Tai et al. 2020; Tian et al. 2020).
Another strategy is to engage and overwhelm the ACE-
2 receptor with recombinant human ACE-2 which is
normally present on the cell surface. So delivering an
excess of the soluble ACE2 helps to neutralize the
virus, by competitively binding to SARS-CoV-2
(rhACE2; GSK2586881) (Ameratunga et al. 2020;
Basit et al. 2020). An open-labeled, randomized, con-
trolled pilot clinical trial is in progress to evaluate this
approach (NCT04287686).

Apart from the ACE-2 receptor, cellular serine pro-
tease TMPRSS2 also plays an important role in facil-
itating the entry of the virus in host cells (Hoffmann
2020). A clinically proven chemical inhibitor of
TMPRSS2, Camostat Mesylate is also able to signifi-
cantly reduce infection in cell lines of human lung
origin (McKee et al. 2020; Rahman et al. 2020; Shirato
et al. 2013; Sternberg et al. 2020). In addition to this,
the heptad repeat 1 (HR1) and heptad repeat 2 (HR2)
present on the SARS-CoV-2 have also been implicated
in the facilitation of cell membrane fusion. HR2—
derived peptides exhibit effective fusion inhibitory
activity (Bosch et al. 2008; Huang et al. 2019; Wang
et al. 2019; Xia et al. 2019a; Xia et al. 2019b).

5.2 Inhibition of endocytosis

It is known that post fusion of the spike protein with
ACE-2 receptor, the virus is ingested in the cells in a
pH and receptor-dependent endocytosis (Chu et al.
2006; Glebov 2020). Targeting endocytosis can be
another potential strategy towards developing poten-
tial drug candidates against SARS-CoV-2. Clathrin-
mediated endocytosis is regulated by AP-2- associated
protein kinase 1 (AAKI1) (Uitdehaag et al. 2019).
Based on library screening, Janus kinase inhibitor
Baricitinib was identified as a possible candidate drug
for SARS-CoV-2 (Baglivo et al. 2020; Cantini et al.
2020; Lo Caputo et al. 2020). Also, Oubain, another
inhibitor of clathrin-mediated, is being tested for its
efficacy in drug trials for SARS-CoV-2 positive
patients (Sisk et al. 2018). Recently, Chloroquine and
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its derivative hydroxychloroquine have garnered great
interest as a therapy against SARS-CoV-2 infection
(Alexander et al. 2020a; Alia and Grant-Kels 2020;
Arnold and Buckner 2020; Ballout et al. 2020;
Costanzo et al. 2020). Several clinical trials are
underway to assess the contribution of chloroquine
therapy in inhibiting SARS-COV-2 viral progression
(Keshtkar-Jahromi and Bavari 2020). Also, it was
shown in vitro, that a derivative of Chloroquine,
hydroxychloroquine (EC50 = 0.72uM) is far more
potent in inhibiting SARS-CoV-2 infection than
Chloroquine (EC50 =5.47 uM) (Savarino et al
2003; Yao et al. 2020). Although the exact molecular
mechanism of hydroxychloroquine in the treatment of
COVID-19 remains elusive, it is believed that
hydroxychloroquine may impair endosome-mediated
viral entry or the late stages of viral replication (De-
vaux et al. 2020).

5.3 Inhibition of viral enzymes

As a result of aggressive antiviral drug development
and discovery programs undertaken in the past, multi-
ple drugs have been developed against viral proteases,
polymerases and helicases (Martinez 2020b). Drugs
developed against other viral diseases such as
Remdesivir (Wang 2020), Flavipiravir (Li et al
2020b), Lopinavir/Ritonavir (Beck et al. 2020; Cost-
anzo et al. 2020; Gyebi et al. 2020; Schoergenhofer
et al. 2020) are presently being evaluated in clinical
trials for their efficacy in containing the COVID-19
pandemic. Remdesivir, an antiviral drug developed
against Ebola, is an adenosine analog which inserts into
viral RNA chains by RNA-dependent RNA poly-
merases (RdRps) and results in premature transcription
termination (Cao et al. 2020; Gordon et al. 2020).
Similarly, Favipiravir and Ribaviorin are guanine ana-
logs and are approved for some viral diseases (Cost-
anzo et al. 2020; Fan et al. 2020). EIDD-2801 is
another oral antiviral drug that acts as a nucleotide
analog, like Remdisivir, albeit with lower EC50, and is
orally administrable (Agostini et al. 2019). Other
antiviral compounds Lopinavir and Ritonavir are pro-
tease inhibitors that target 3C—like protease (3CLpro)
of SARS-CoV-2 (Bhatnagar et al. 2020). The main
coronavirus protease, 3CLpro is responsible for pro-
cessing the polypeptide to NSPs. Using high-through-
put screening for compounds against 3CLpro, four
molecules, viz. Prulifloxacin, Tegobuvir, Bictegravi-
rand and Nelfinavir, were identified (Barnard et al
2006; De Clercq 2006; Liu et al. 2020b).
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5.4 Inhibition of viral envelope, membrane,
nucleocapsid and accessory proteins

SARS-CoV-2 envelope (E), membrane (M) and
Nucleocapsid (N) protein are critical for virus survival
and propagation, and therefore such structural proteins
are the best drug targets. Since these viral proteins are
structurally very different from the host proteins, drug
targeting these proteins will have minimal adverse
effects. Apart from protecting the viral genome, these
structural proteins are also involved in suppressing the
host immune system, thereby providing the virus a
strategic advantage over the host (Bojkova et al. 2020;
Borgio et al. 2020; Cherian et al. 2020). The N protein
acts to suppress RNA silencing and suppresses RNA
interference-mediated by siRNA. Therefore many
siRNA based therapeutics target viral E, M and N
protein translation and inhibit viral replication, at least
in vitro (Nur et al. 2015; Sohrab et al. 2018; Song et al.
2019). However, siRNA-based therapies are still not
available for human use due to inherent stability issues
and the unavailability of reliable delivery methods (De
Clercq 2006).

The E protein also serves as an ion channel and this
action is inhibited by hexamethylene amiloride (Per-
vushin et al. 2009). Another chemical inhibitor PJ34
targets the unique ribonucleotide-binding pocket at the
N-terminal domain of N protein (Lin ef al. 2014). It is
important to note that most of these inhibitors were
designed against the SARS virus; due to the mutations
in the SARS-CoV-2 virus, such inhibitors may not be
as effective in fighting against the ongoing COVID-19
pandemic.

LJO01 and LJO03 are broad-spectrum antiviral
compounds that not only inhibit viral entry in the host
cells but also damage the viral membrane by producing
singlet oxygen molecules. Unfortunately, LJ0OO1 is
physiologically unstable and is photo-dependent (Bar-
low et al. 2020). Nevertheless, LJ001 defines a new
class of antiviral compounds, and further research into
this class of compounds will yield encouraging results.

5.5 Suppression of excessive inflammatory
response

A well-orchestrated cytokine response is critical for the
host immune response. It has been reported that some
SARS-CoV-2 infected patients demonstrate a hyper-
inflammatory response, possibly due to deregulated
cytokine response. It was reported that COVID-19
patients in the ICU had high cytokines in plasma when
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compared with non-ICU patients, suggesting that
cytokine dysregulation is involved in the severe form
of COVID-19 disease (Channappanavar and Perlman
2020; Liu et al. 2020c). Additionally, SARS-CoV-2-
infected patients admitted in ICU display increased
levels of GM-CSF and IL67CD4* T cells when com-
pared to ICU naive patients (Boettcher e al. 2007). The
above facts point to the possibility that inhibition of
excessive inflammatory response might reduce the
severity of COVID-19 disease. Corticosteroids are
known to have excellent pharmacological potential in
suppressing systemic inflammation (Liu et al. 2020a;
Zha et al. 2020). However, their use in COVID-19
patients is still debatable and requires a detailed study.

It has been demonstrated that after the onset of
SARS-CoV-2 infection, CD41T Cells are activated to
produce GM-CSF and other inflammatory cytokines,
thus resulting in further induction of CD147CD16™
monocytes with high expression of interleukin 6 (IL-6)
(Conti ef al. 2020; Liu et al. 2020a). This observation
leads to the possibility that by blocking the IL-6
receptor we could potentially reduce immune stress
caused by SARS-CoV-2. In line with this observation,
a multicenter, randomized, controlled clinical trial is
currently underway using an IL-6 receptor-specific
antibody  Tocilizumab (Li et al.  2020d)
(NCT04315480).

Another recent advance in COVID -19 treatments is
the Convalescent plasma treatment. With infection
rates growing and no specific therapy available, therapy
with convalescent plasma (CP) has been proposed as a
principal treatment. In this therapy, the plasma obtained
from a donor recovered from the disease is used to
develop humoral immunity against SARS-CoV-2-in-
fected patients. The plasma from the donor patient acts
as a source of human antibodies against the infection
(Jawhara 2020; Shi et al. 2020a, b). However, large
scale human trials need to be conducted to better
understand and evaluate CP as a method of treatment
for COVID-19.

6. Current efforts from top pharmaceutical
companies

Many pharmaceutical giants have now jumped into the
race to find a drug for SARS-CoV-2 infected patients.
Given the high number of fatalities across the globe,
even regulatory authorities are giving rapid approvals
to conduct clinical trials for promising candidate drugs.
Table 2 shows a list of companies that are conducting
clinical trials or are seeking approval from regulatory
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Table 2. List of companies actively involved in finding a drug to treat SARS-CoV-2 patients

Company/
organization

Candidate drug

Development

phase

Current status and plans

Timelines

Gilead

Sanofi

Abbvie

Regeneron

Ascletis

Remdesivir

Hydroxychloroquine

Lopinavir/ritonavir
combination

Monoclonal
antibody therapy

Combination of two

1

Preclinical

I

Preclinical

Remdesivir is now being tested in
five Covid-19 clinical trials that
have been set up at lightning
speed

Conduct additional CTs and
supply millions of doses of an
existing anti-malaria product

Collaboration ongoing with select
health authorities and institutions
globally to determine antiviral
activity against SARS-CoV-2

Aiming to select the top 2
antibodies for a cocktail therapy,
which can either be administered
to at-risk -vaccine naive
population or as treatment for
those already infected

The Chinese company is testing a

CT is anticipated to be completed
by end of April 2020

N.A.

N.A.

Potential to enter human CT by
early summer 2020

N.A.

antivirals

combination of antivirals,

developed against HIV and the
other approved for hepatitis C

Takeda Polyclonal antibody Preclinical

therapy

Collaboration with several health
and regulatory agencies and

Program initiated in March 2020

health care partners across the
globe on polyclonal antibody
TAK-888

Lilly Antibody drug Preclinical

Eli Lilly developing antibody
treatments for coronavirus

CTs in humans to be started in the
next four months of 2020

infection. Using a blood sample
from a coronavirus survivor

Partner company AbCellera
identified more than 500
antibodies that might protect
against the virus

The information was collected from the company web sites or press release. CT Clinical Trial, N.4. status not known

authorities to conduct trials. Since the onset of the
SARS epidemic, much knowledge was generated about
drug targets and some candidate molecules were
developed as well (Kumar et al. 2017). However, these
molecules could not be taken to clinical trials since
there were not enough patients suffering from SARS
virus by the time these drugs were developed. Never-
theless, this information is of tremendous use since
SARS—CoV and SARS-CoV-2 share striking similari-
ties in the genome, replication cycle and even symp-
toms experienced by patients (Su and Lai 2020).
Systemic genomic comparisons have revealed a strik-
ing 79% similarity at the nucleotide level between
SARS-CoV-2 and SARS-CoV. However, only 72%

nucleotide similarity was observed in the spike
(S) protein of both the viruses (Zhang and Holmes
2020). At the biochemical level both the virus display
preferential binding to the ACE-2 receptor. Even at the
clinical level, the chest X-rays of patients infected with
either SARS-CoV or SARS-CoV-2 display multilobar
ground glass like opacities. Similarly the CT scan of
patients infected with either virus display lobar con-
solidations (Ceccarelli et al. 2020).

However, since the SARS epidemic, the virus has
mutated considerably, and as a result, it now has the
Spike protein which is quite different from the previous
version. This fact makes efforts to find drugs that
inhibit virus entry to host cells quite difficult.
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Companies are also relying on drug repurposing
(Beck et al. 2020; Wang et al. 2020), like chloroquine
from Sanofi is planned to be tested in Coronavirus
patients world over. Meanwhile, other companies like
Abbvie, Gilead and Regeneron are testing known
antiviral in combinations in patients affected with the
SARS-CoV-2 virus (https://www.abbvie.com/
coronavirus.html). This approach provides a strategic
advantage to the ongoing efforts, as the pharmacolog-
ical effect of single drugs is well-studied on the human
body. Also, we know the exact mechanism of action
and dose regimen for these antivirals. Now using them
in combination to inhibit more than 2 drug targets can
be a winning combination (Borges do Nascimento
et al. 2020). Globally, scientists and health authorities
are eagerly waiting to interpret the results obtained
from these trials. In the meantime, companies like
Takeda and Lilly are working on antibody therapy, and
evaluating the efficacy of therapeutic molecules at
breakneck speed. Under the aegis of WHO, ‘SOLI-
DARITY” clinical trial is underway to evaluate the
treatment opportunities available for COVID-19
patients. The trial is being conducted simultaneously in
30 countries and under this trial, four treatment options
are being compared against the standard care options
for SARS-CoV-2-infected patients. The trial will test
the efficacies of Remdesivir and Chloroquine or
Hydroxychloroquine as single agents, Lopinavir in
combination with Ritonavir, and Lopinavir with
Ritonavir plus Interferon beta-1a (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019/global-
research-on-novel-coronavirus-2019-ncov/solidarity-
clinical-trial-for-covid-19-treatments).

7. Conclusion

Unfortunately, at the time of writing this article there
are more than 22,00,000 confirmed patients suffering
from SARS-CoV-2 with more than 152,000 reported
deaths across the globe.

Novel infectious diseases resulting from the zoonotic
transmission of ever-evolving and mutating coron-
aviruses will continue to pose a global threat to peo-
ple’s lives and the global economy. Today, despite
having suffered from two major coronavirus-related
outbreaks like SARS and MERS, the world remains
underprepared to formidably accept the challenge of a
global pandemic like COVID-19. We are still clueless
about the handling of the disease and far away from a
definite line of treatment against the SARS-CoV-2
virus. It is extremely critical that a concerted effort
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across the globe is undertaken to find a robust cure for
coronaviruses-related illness. Given the arduous and
cost-sensitive road map for novel drug development, it
is of utmost importance to develop broad-spectrum
antivirals that act on common features of the coron-
avirus lifecycle. Drug repurposing should be broad-
ened, and more combination drugs should be evaluated
in patient trials to allow inhibition of the disease
through more than one target. Although there is a lot to
learn from the SARS and MERS epidemic, and a lot of
research has been performed to develop a suitable cure,
the same cannot be applied to COVID -19 due to viral
evolution. Across the globe, serious efforts are ongoing
to find compounds and drugs that can decrease
COVID-19 progression and it is likely that all such
prospects have not been covered in this review. WHO
in collaboration with Microsoft maintains an active
database of ongoing trials and compounds active

against SARS-CoV-2  (https://www.who.int/ictrp/
search/en/).
Extraordinary  collaborations and technology

exchange in the area of antiviral drug discovery and
clinical trials will expedite patient access to more
reliable drugs with improved therapeutic potential. This
will also considerably reduce time-to-market for can-
didate drugs. The current ongoing research should lead
to more collective drug discovery efforts, where part-
nership between research institutes and industries will
be of paramount importance.
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