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ABSTRACT

The task of predicting drug-target affinity (DTA) plays an increasingly important role in the early stage of in silico drug discovery and development. Currently, a
variety of machine learning-based methods have been presented for DTA prediction and achieved outstanding performance, which is beneficial for speeding up the
development of new drugs. However, most convolutional neural networks (CNNs) based methods ignore the significance of information from CNN layers with
different scales for DTA prediction. In addition, each feature provides different contributions to the final task. Therefore, in this study, we propose a novel end-to-end
deep learning-based framework, MultiscaleDTA, to predict drug-target binding affinity. MultiscaleDTA incorporates multi-scale CNNs and a self-attention mechanism
to capture multi-scale and comprehensive features for characterizing the intrinsic properties of drugs and targets. Extensive experimental results on both regression
and binary classification tasks demonstrate that MultiscaleDTA achieves competitive performance compared to state-of-the-art methods.

1. Introduction

Identifying compounds that can generate the reaction with the target
protein and then control the progression of diseases is the aim of drug
discovery. The pipeline of new drug discovery and development is
cumbersome and complex and relies on many factors. Accurately pre-
dicting the binding affinity between the drug-target pair is one of the
most important steps in the early stage of drug discovery and design and
is beneficial to decipher potential mechanisms of drug off-target adverse
and action events [1]. Experimentally determining the drug-target
binding affinity remains the most effective method. However, it is
time-consuming and prohibitively expensive, especially considering that
there are over 5000 possible protein targets [2] and more than 100
million potential drug compounds [3]. Therefore, it is necessary to
develop computational methods to rapidly predict the binding affinity to
facilitate the process of screening drug candidate molecules, narrowing
the search space of wet experiments [4,5].

The existing computational methods for DTA prediction mainly fall
into two categories, including structure-based methods and structure-
free methods. Structure-based methods, such as molecular docking,
utilize the known three-dimensional structures of drug and protein
molecules to measure the binding affinity between them. Although these

methods can accurately measure the binding affinity, they suffer from
two main limitations: (1) the scarcity of high-quality manually anno-
tated 3D structures of proteins and obtaining such structures remains
challenging, and (2) requiring high computational resources.

To mitigate the limitations, a number of structure-free methods (i.e.,
machine learning-based methods and deep learning-based methods) for
DTA prediction have been proposed to speed up potential drug
screening. Such methods generally consist of two steps: feature extrac-
tion and regression procedure. First, the features of drug compounds and
target proteins are extracted from primary sequences. Second, the ob-
tained features are used as inputs of regressors or networks to measure
specific values. For example, Ballester et al. proposed a random forest-
based score function to predict the protein-ligand binding affinity by
taking the occurrence times of specific protein-ligand atom type pairs
interacting within a certain distance as features [6]. SimBoost uses the
drug and target similarities and a matrix factorization model to extract
the effective binding features for predicting DTA based on a gradient
boosting tree model [7]. Betsabeh et al. used the multi-source informa-
tion from different similarity measures and the K-nearest neighbor al-
gorithm to build a DTA prediction model based on the gradient boosting
machine [8]. Fergus et al. demonstrated that combining a diverse group
of ligand-based features in machine learning scoring functions can
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improve their performance for DTA prediction [9].

These methods have the ability to generalize to drug-target pairs
with no similarity to any ones in the training set and are high sequence
sensitively, which means they can output distinct binding affinities for
highly similar drug-target pairs. However, they are limited by the
expressiveness of the handcrafted features that rely on prior knowledge,
leading to the limited performance of models. Recently, with the
remarkably successful application in various fields of deep learning,
deep learning-based methods for DTA prediction have gained unprece-
dented attention, which can use an end-to-end way to automatically
extract feature representations of the drug and target and achieve su-
perior performance [10-17]. For example, Hakime et al. proposed
DeepDTA in 2018, which used the convolutional neural networks
(CNNs) to extract features from drug and protein sequences separately to
predict the drug-target binding affinity [14]. In 2019, based on Deep-
DTA, Hakime et al. proposed another model WideDTA, which not only
used ligand SMILES and protein sequences as inputs but also adopted
ligand maximum common substructures and protein domains and motifs
to extract effective features to represent the drug-target pair [12].
MATT_DTI builds a relation-aware self-attention block to learn the
correlations between atoms for the drug representation and then uses
the multi-head attention mechanism to combine the drug and protein
representations for final prediction [11]. To extract the similarity be-
tween drug representation and protein representation, DeepCDA em-
ploys a hybrid network consisting of CNN and long-short-term memory
(LSTM) to capture the features of drugs and targets, respectively, and
then proposes a two-sided attention mechanism to learn the binding
representation [10]. To take advantage of the important topological
structure information hidden in these molecules, several models have
been built to model two-dimensional graph structure information of
drugs and targets. For example, GraphDTA represents drugs graphically
and extracts compound representations using graph neural networks
(GNN) to predict drug-target affinity [18]. Tian et al. improved Graph-
DTA model from a two-channel model to a three-channel model, inter-
preted the target/protein sequence as time series, and used LSTM
network to extract its features [19]. DGraphDTA uses contact maps as
the inputs of proteins based on GraphDTA, and uses GNNs to extract
drug and protein structural information, respectively [20].

Although these deep learning-based methods have achieved satis-
factory performance on the DTA prediction task, there still exist some
problems. First, most of them ignore the heterogeneous information
from different neural network layers, which tends to lose parts of task-
related information. In addition, they also do not consider the fact
that the features from the neural network may contain some redundant
elements, which can interfere with the final task, leading to relatively
poor performance.

To overcome the above-mentioned problems, we propose a novel
end-to-end deep learning-based method, called MultiscaleDTA, for DTA
prediction. To be specific, we first design a multi-scale CNNs feature
extractor to capture multi-scale local information from primary drug
(target) sequences. Subsequently, a self-attention mechanism is adopted
to measure the contribution of each feature to the final DTA prediction
for obtaining a more effective multi-scale feature representation. Next,
the feature representations from different CNN layers are concatenated
as the final drug (target) representation. MultiscaleDTA further con-
catenates the drug and target representations and sends the combined
features into fully connected layers to predict DTA. The effective and
multi-scale supervision information can help MultiscaleDTA to predict
drug-target affinity accurately only based on primary sequence infor-
mation. Through extensive experiments on benchmark datasets, we
demonstrate that compared to other state-of-the-art methods, Multi-
scaleDTA not only achieves superior performance on DTA prediction,
but also obtains competitive performance on drug-target interaction
identification.
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2. Material and methods
2.1. Datasets

In this work, drug-target binding affinity prediction is formulated as
aregression task, and we select two public benchmark datasets proposed
for DTA prediction to evaluate the performance of the proposed Multi-
scaleDTA, including Davis [21] and KIBA [22] datasets. The Davis
dataset contains 30,056 drug-target pairs, in which the number of
unique drugs is 68 and the number of unique targets is 442. The kinase
dissociation constant K, is taken to measure the binding affinity. The
higher Ky value means the binding between the drug-target pair is
lower. Following the previous study [23-26], the Ky values are trans-
formed into log space as follows:

Ky
pKyq = —logl0 To°

The KIBA dataset consists of 229 unique drugs and 2111 unique
targets, which form 118,254 different drug-target pairs. Differing from
the Davis dataset, it adopts KIBA scores as binding affinities, which
incorporate different information sources:Ky, K; (inhibition constant),
and IC50(the half-maximal inhibitory). In these two datasets, the
SMILES strings of drugs are collected from PubChem compound data-
base [27] based on PubChem CIDs and the target’s protein sequences are
collected from UniProt database [28].

In addition, we also assess the performance of MultiscaleDTA in
drug-target interaction (DTI) prediction, which is referred to as a binary
classification task. Two publicly available datasets are taken as bench-
mark datasets: Human and Caenorhabditis elegans(C.elegans) datasets.
The positive DTI pairs in them are derived from Matador [29] and
DrugBank4.1 [30] and the highly credible negative pairs are generated
by using a systematic screening framework. The details of these four
datasets are reported in Table 1.

®

2.2. Model architecture

Fig. 1 shows the overall framework of the proposed MultiscaleDTA.
The MultiscaleDTA model mainly consists of CNN networks and the self-
attention mechanism. For the drug SMILES (Simplified Molecular Input
Line Entry System) sequence and the protein amino acid sequence, we
first employ the one-hot technique to transform them into numerical
data, which meet the requirement of the neural network. Next, the ob-
tained numerical data are sent into two three-layer multi-scale CNNs,
respectively, to extract local and multi-scale information. Then, the
features from each CNN layer are multiplied by a self-attention matrix to
learn more effective features. Subsequently, the optimized features from
different CNN layers are concatenated as the representation of the drug
(target) molecule, which contain multi-scale and more comprehensive
information to characterize the intrinsic properties of molecules.
Finally, we concatenate the representations of the drug and target and
send the combined features into fully connected layers to conduct DTA
prediction.

2.3. Input representation

For the drug molecule, the SMILES is adopted to represent it, which is
a chemical notation that uses short ASCII strings to describe the chem-

Table 1.S

ummary of the benchmark datasets.
Datasets Task type Proteins Compounds Interactions
Davis Regression 442 68 30,056
KIBA Regression 229 2111 118,254
Human Classification 2001 2726 6728
C. elegans Classification 1876 1767 7786
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Fig. 1. The overall architecture of the proposed MultiscaleDTA. Firstly, the drug sequence and protein sequence are embedded by the one-hot technique. Then, the
two three-layer multi-scale CNNs with the self-attention mechanism are designed to extract multi-scale and comprehensive features of the drug and target molecules.
Finally, the features of the drug and target molecules are concatenated, and the combined features are imported into the fully connected layers to predict the

binding affinity.

ical species structure. We use one-hot technique to embed it. Specif-
ically, a vocabulary is constructed to denote each character in SMILES
[31]. Then each character in SMILES is projected with an integer be-
tween 1 and 64. For each drug SMILES string D, we can get a numerical
vector as follows:

(2)

D = [S|7527 ...7s'l]7

where n is the length of the drug SMILES string and each element de-
notes an integer representing the character type.

For the target molecule, it is represented by an amino acid string.
Similar to the drug molecule, we also construct a vocabulary, in which
each integer between 1 and 20 represents a type of the standard amino
acid. For given a target sequence T of length I, a numerical vector is
generated as follows:

3

Note that we set the largest length of SMILES to 100. If the length of a
drug string is longer than 100, the excess parts will be truncated. And if
the length is less than 100, the zero-padding technique will be adopted.
For the target protein sequence, the maximum length is set to 1200. To
meet the requirement of neural networks, they are processed like the
drug.

T= [0176127 "',flf]-

2.4. CNN

The convolutional neural network is a classical type of feedforward
neural network, which is commonly used to extract latent contextual
semantic information of sequence-based data (e.g., text) based on mul-
tiple convolution kernels [32]. Previous studies have illustrated that
CNNs can effectively capture discriminative local features from primary
protein sequences by using multiple types of convolution kernels,
leading to satisfactory performance [33-37]. Inspired by these studies,
we use multi-scale CNNs to code protein sequences into fixed-size
feature vectors that contain multi-scale local information. Our CNN
module consists of embedding, convolutional, activation and pooling
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layers. The embedding layer is used to transform the input vector into
the matrix data. For the convolutional layers, they have three different
sizes of convolutional kernels, including 96 x 96, 64 x 64, and 32 x 32.
The output of each CNN layer is the obtained features and is further
processed by the activation layer that is equipped with rectified linear
unit (ReLU) and the pooling layer that is equipped with the max pooling
function. To avoid over-fitting, the dropout function is also adopted.
Specifically, for the drug SMILES string D = [s1, S2, -+, Sn], we first send it
into the embedding layer as follows:

My = Embedding(D), (4)

Then the obtained M is sent into CNN, activation, and pooling
layers:

FYY) = maxpooling (ReLU(CNN™ (Mp)))
F? = maxpooling (ReLU(CNN(Z) (ReLU(CNN" (MD)) ) %)

FS) = maxpooling (ReLU(CNN@) (ReLU(CNN® (ReLU(CNN"V (MD)) "))

For the target amino acid sequence T = [a;, @z, -+, @], similar to the
drug, we can get the following feature vectors:

Fy) = maxpooling (ReLU(CNN" (My)))

maxpooling <ReLU( CNN® (ReLU(CNN™ (MT)) ) (6)

maxpooling (ReLU(CNN<3> (ReLU(CNN® (ReLU(CNN"V (MT)) )

2.5. The self-attention mechanism

Each feature vector from different CNN layers may contain some
redundant and task-irrelated elements, which will have a negative
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impact on the final DTA prediction. And each element in the feature
vector has different contributions to final prediction. Therefore, inspired
by the graph attention neural network (GAT) and borrow the idea of the
self-attention mechanism to make the model focus on important parts in
a feature vector, which provide more contribution to the DTA predic-
tion. To be specific, we set up a learnable parameter matrix to assign
weights to the vectors from different CNN layers and then multiply the
matrix with the corresponding vector. Finally, the weighted vectors are
concatenated as the final representation of the molecule as follows:

V = Wi FV||[WoF @ || WsF®), %)

where W; is the i-th learnable parameter matrix in i-th layer and F®

represents the output vector from the i-th max pooling layer, and ‘||’
denotes the concatenate operation.

For a given drug, we can get a vector Vp = Wng” HWZF[(,2> HW3F[(,3).
Vr

Similarly, for a target =

wiRY | wor? | wer.

protein sequence, we get

2.6. Prediction

After obtaining the representations of the drug Vp and target Vr, we
further concatenate them together as the representation of a drug-target
pair, that is Vj,q = Vp||Vr. Then, we feed it into a three-layer fully
connected network with the ReLU activation function to predict the
binding affinity.

y= F‘C(VV(])7 W(Z), W(3)~, Vﬁnal ) (8)

where W, W and W® are the weight parameters of the fully
connected layers.

For a group of drug-target pairs in the training dataset and corre-
sponding truth affinity values, mean squared error (MSE) is taken as the
loss function to train the various weight parameters in our model as
follows:

n

1 2
loss = — i — Vi
oss nE i — )

i=1

9

Where y; and y; are the predictive affinity and the truth affinity of i-th
drug-target pair, and n is the number of the drug-target pairs. In addi-
tion, when we train our model to prediction DTI, the loss function MSE is
replaced with the cross-entropy function, which is the commonly used
loss function for classification.

2.7. Hyperparameter settings

Training a DTA model requires hyperparameter settings, and there
are many hyperparameters in MultiscaleDTA. Since it takes hours to
train a model, some parameters are set based on the human experience.
Our hyperparameter settings are shown in Table 2.

Table 2

The hyperparameter settings using human experience.
Hyperparameter Setting
Epoch 2000
Learning rate 0.0008
Batch size 512
Optimizer Adam
Dropout 0.2
Pooling method max pooling
Fully connected layers after concatenation 3
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3. Result and discussion
3.1. Performance evaluation metrics

Concordance index (CI), a model evaluation index proposed by
GOnen and Heller [38], is designed to calculate the difference between
the predicted value of the model and the ground truth. CI is defined as
follows:

1
= > h(by—by)

dy>dy

10)

where b, is the prediction value for d,, b, is the prediction value for
dy, h(x) is the step function and Z is the normalized hyperparameter.
Commonly, the step function h(x) is defined as follows:

Lifx>0
0.5,ifx =0
0,ifx < 0

h(x) an

Regression toward the mean (r? index) is a measure evaluating the
external predictive performance of a model. If a variable is very large,
then r2 means how much it tends to approach the average next time. r2
index is calculated as follows:

2 =rx <1—\/r2—r§>

where r is the squared correlation coefficients with intercepts and ry is
the coefficients without intercepts.

12)

3.2. Compare with DTI prediction models in classification tasks

We also evaluate our model’s performance in the drug-target inter-
action prediction (DTI), which belongs to the binary classification task
to identify whether a given drug-target is interactive or not. For a fair
comparison, we conduct experiments on two benchmark datasets:
Human dataset and C.elegans dataset and choose the area under the
receiver operating characteristic curve (AUC), Precision, and recall as
the performance evaluation metrics. We compare our model with
traditional machine learning-based methods, including K-nearest
neighbors (KNN), Random Forest (RF), L2-logistic (L2), and support
vector machine (SVM), and several deep learning-based methods,
including CPI-GNN [39], DrugVQA [40], and TransformerCPI [41]. Note
that for a fair comparison, the input of DrugVQA is the structure-based
features of proteins, while its another version VQA-SEQ that only takes
primary amino acid information as input is displayed here. We imple-
ment all experiments five times with different seeds and report the
average and standard deviation of results as the final result in DTI pre-
diction. The best results of all methods are marked in bold.

The comparative results of MultiscaleDTA and competing methods
on the Human dataset are presented in Table 3. It can be seen that except
for SVM, MultiscaleDTA has better performance than other methods in
terms of the best AUC, Precision, and Recall, which are 0.981, 0.947,

Table 3

The performance of MultiscaleDTA and baseline models on the Human dataset.
Model AUC Precision Recall
KNN 0.860 0.927 0.798
RF 0.940 0.897 0.861
L2 0.911 0.913 0.867
SVM 0.910 0.966 0.969
GraphDTA 0.960(£0.005) 0.882(+0.040) 0.912(40.040)
GCN 0.956(+0.004) 0.862(+0.006) 0.928(+0.010)
CPI-GNN 0.970 0.918 0.923
DrugVQA(VQA-seq) 0.964(40.005) 0.897(£0.004) 0.948(+0.003)
TransformerCPI 0.973(+0.002) 0.916(+0.006) 0.925(+0.006)
MultiscaleDTA 0.981(+0.004) 0.947(+0.005) 0.942(+0.006)
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and 0.942, respectively. For the method SVM, although it achieves the
best Precision and Recall on Human dataset that is a relatively small
dataset, when it runs on a larger dataset (i.e., C.elegans dataset), its
performance has a great drop. The reason may be that traditional ma-
chine learning-based methods need to export knowledge to characterize
the intrinsic properties of molecules, leading to poor generalization.

Table 4 summarizes the results of MultiscaleDTA and other methods
on C.elegans dataset. As shown in Table 4, we can see that MultiscaleDTA
significantly outperforms other methods in terms of AUC, Precision, and
Recall. To be specific, when compared to the runner-up TransformerCPI,
MultiscaleDTA improves AUC from 0.988 to 0.994 (a relative
improvement of 0.6 %), Precision from 0.952 to 0.982 (a relative
improvement of 3.2 %), and Recall from 0.953 to 0.971 (a relative
improvement of 1.9 %), which indicates the superiority of our model in
the DTI prediction task.

3.3. Compare with DTA prediction models in regression tasks

To evaluate the performance of the proposed MultiscaleDTA in DTA
prediction, we compare it with several state-of-the-art deep learning-
based methods on Davis and KIBA datasets, including DeepDTA,
WideDTA, MT-DTI, DeepCDA, MATT-DTI, and GraphDTA. Note that
DGraphDTA [24] is not adopted since it uses the structure-based fea-
tures to represent proteins. Two feature-based methods also are selected
for comparison, including KronRLS and SimBoost. The best results of all
methods are marked in bold font.

In Table 5, the comparative results between MultiscaleDTA and
competing methods on the Davis dataset are listed. As shown in Table 5,
we can see that when compared to feature-based methods, Multi-
scaleDTA improves CI index by 0.027-0.026 and r? index by
0.094-0.331 and reduces MSE by 0.082 and 0.179. In addition, when
compared to deep learning-based methods, MultiscaleDTA also signifi-
cantly outperforms them in terms of the best CI index, MSE and r2 index,
which are 0.898, 0.200, and 0.738, respectively.

The performance of MultiscaleDTA and competing methods on the
KIBA dataset is summarized in Table 6. From this table, we can observe
that compared to either feature-based methods or deep learning-based
methods, MultiscaleDTA greatly improves the predictive performance.
Each metric for evaluation, including CI index, MSE, and r,zn index, has
achieved significant improvement. For CI and r? indexes, MultiscaleDTA
can reach 0.893 and 0.793, which are 0.002-0.111 and 0.037-0.451
higher than competing methods.

The above discussed results illustrate the effectiveness and robust-
ness of our model. There are two main reasons. Firstly, when compared
to feature-based methods which highly rely on the expert knowledge-
based handcrafted features as the input, MultiscaleDTA does not
require the prior knowledge and can automatically extract effective and
discriminative features from original data. Secondly, when compared to
deep learning-based methods, MultiscaleDTA introduces a self-attention
mechanism to make the model focus on important parts of each feature
representation from different CNN layers. In addition, it constructs an
informative feature profile by integrating the multi-scale information

Table 4
The performance of MultiscaleDTA and baseline models on the C. elegans
dataset.

Model AUC Precision Recall
KNN 0.858 0.801 0.827
RF 0.902 0.821 0.844
L2 0.892 0.890 0.877
SVM 0.894 0.785 0.818
GraphDTA 0.974(+0.004) 0.927(+0.015) 0.912(+0.023)
GCN 0.975(4-0.004) 0.921(4-0.008) 0.927(40.006)
CPI-GNN 0.978 0.938 0.929
TransformerCPI 0.988(+0.002) 0.952(+0.006) 0.953(+0.005)
MultiscaleDTA 0.994(+0.003) 0.982(+0.009) 0.971(+0.005)
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Table 5

The performance of MultiscaleDTA and baseline models on the Davis dataset.
Model CI(std) MSE rfn(std)
KronRLS 0.871 (+0.001) 0.379 0.407 (£0.005)
SimBoost 0.872 (£+0.002) 0.282 0.644 (+0.006)
DeepDTA 0.878 (+0.004) 0.261 0.630 (£0.017)
WideDTA 0.886 (+0.003) 0.262 -
MT-DTI 0.887 (+0.003) 0.245 0.665 (+0.014)
DeepCDA 0.891 (4+0.003) 0.248 0.649 (£0.009)
MATT-DTI 0.891 (£0.002) 0.227 0.683 (+0.017)
GraphDTA 0.893 (£0.001) 0.229 -
MultiscaleDTA 0.898(+0.004) 0.200 0.738(+0.012)

Table 6

The performance of MultiscaleDTA and baseline models on the KIBA dataset.
Model CI(std) MSE r2,(std)
KronRLS 0.782 (+0.001) 0.441 0.342 (£0.001)
SimBoost 0.836 (+0.001) 0.222 0.629 (£0.007)
DeepDTA 0.863 (+0.002) 0.194 0.673 (£0.009)
WideDTA 0.875 (+0.001) 0.179 -
MT-DTI 0.882 (40.001) 0.152 0.738 (£0.006)
DeepCDA 0.889 (+0.002) 0.176 0.682 (£0.008)
MATT-DTI 0.889 (+0.001) 0.150 0.756 (+0.011)
GraphDTA 0.891 (40.002) 0.139 -
MultiscaleDTA 0.893(+0.003) 0.135 0.793(+0.009)

from different CNN layers, leading to a more comprehensive feature
representation, which plays a crucial role in building a powerful pre-
dictor. Therefore, there is no surprise for the superiority of our model.

3.4. Ablation experiment

To investigate the contribution of each part to the performance of
DTA prediction in the proposed MultiscaleDTA, each part from the
method MultiscaleDTA is removed. We implement the ablation experi-
ments with the variants of our model by using Davis and KIBA datasets:

§ MultiscaleDTA without the multi-scale information (w/o MSI) only
uses the information from the last CNN layer as the representation of
the drug or target.

§ MultiscaleDTA without the self-attention mechanism (w/o SAM)
directly concatenates the features from different CNN layers as the
representation of the drug or target.

Fig. 2 illustrates the comparative results of MultiscaleDTA and its
two variants on the two datasets. As shown in Fig. 2, we can see that the
proposed MultiscaleDTA achieves better prediction performance than its
variants, which indicates that incorporating multi-scale information and
the self-attention mechanism can obtain a more discriminative repre-
sentation. In detail, the performance gap between MultiscaleDTA (w/0
MSI) and MultiscaleDTA is the greatest, demonstrating that multi-scale
information plays the most important role in our model and removing
this part will greatly reduce the model performance. Besides, Multi-
scaleDTA (w/o MSI) performance is worse than MultiscaleDTA (w/o
SAM) since it loses the information from different CNN layers, which
contains more sufficient and effective task-related information. The
deprecation of the self-attention mechanism also results in the perfor-
mance reduction. It also indicates the effectiveness of the self-attention
mechanism in optimizing the obtained features.

4. Conclusion

Identifying the binding affinity of the unseen drug-target pair is
crucial in facilitating drug discovery. In this work, we present Multi-
scaleDTA, a novel end-to-end deep learning-based method for accurately
predicting DTA. Specifically, we first build two multi-scale feature
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Fig. 2. CI, MSE and r, results from variants of our method on the Davis and KIBA dataset.

extractors to learn multi-scale features of drug compounds and target
proteins, respectively. Next, a self-attention mechanism is introduced to
calculate the contribution of each feature from different CNN layers to
DTA prediction, which can let our model focus on important parts. Then,
the features from different CNN layers are concatenated as the drug
(target) representation. Finally, the representations of the drug and
target are further concatenated, and the combined features are fed into
the fully connected layers to implement binding affinity prediction.
Experimental results on two DTA datasets, including KIBA and Davis,
show that the proposed MultiscaleDTA is superior to the existing
models. In particular, we also use Human and C.elegans datasets to
evaluate the performance of MultiscaleDTA on the classification task,
and the experimental results indicate that our model also achieves
competitive performance.
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