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ABSTRACT: Virtual screening of protein−protein and protein−peptide
interactions is a challenging task that directly impacts the processes of hit
identification and hit-to-lead optimization in drug design projects involving
peptide-based pharmaceuticals. Although several screening tools designed to
predict the binding affinity of protein−protein complexes have been proposed,
methods specifically developed to predict protein−peptide binding affinity are
comparatively scarce. Frequently, predictors trained to score the affinity of small
molecules are used for peptides indistinctively, despite the larger complexity and
heterogeneity of interactions rendered by peptide binders. To address this issue,
we introduce PPI-Affinity, a tool that leverages support vector machine (SVM)
predictors of binding affinity to screen datasets of protein−protein and protein−
peptide complexes, as well as to generate and rank mutants of a given structure.
The performance of the SVM models was assessed on four benchmark datasets,
which include protein−protein and protein−peptide binding affinity data. In addition, we evaluated our model on a set of mutants of
EPI-X4, an endogenous peptide inhibitor of the chemokine receptor CXCR4, and on complexes of the serine proteases HTRA1 and
HTRA3 with peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAffinity.
KEYWORDS: machine learning, mutation, dissociation constant, peptide design, protein−protein interaction, binding free energy

■ INTRODUCTION
Protein−protein interactions (PPIs) are fundamental to most
biological processes.1 Prominent disorders, such as cancer and
degenerative diseases, are related to aberrant PPIs.2 In therapy,
optimized PPIs are also critical for the strong binding of
antibodies to their protein antigens.3 Therefore, the character-
ization of PPIs in terms of their binding affinity (BA) is highly
relevant to the design of new biologics and therapeutic
compounds.4 Notably, peptides are a promising class of
bioactive compounds, which often have higher specificity and
reduced side effects compared to small-molecule pharmaceut-
icals.5 Currently, there are more than 60 approved peptide
drugs, and hundreds of peptidic compounds undergo clinical
or preclinical trials.6 However, the design of peptide drugs
remains a challenging task due to their flexible structures and
diversity of binding sites.7

Virtual screening approaches, based on BA predictions,
reduce the time of the drug development pipelines.3 Thus, over
the past decades, several screening tools based on the BA of
protein−protein complexes have been introduced.8−26 Rele-
vant examples of these methods are DFIRE,9 CP_PIE,16

ISLAND,24 and the web server PRODIGY,21,27 (which tailored
and improved the original model introduced by Kastritis et
al.).20 Protein−peptide complexes are usually scored with
functions derived from binding affinity data of small molecules.

Examples of such scoring methods are RF-Score28 and
Kdeep,29 which used a random forest algorithm30 and a
convolutional neural network,31,32 respectively, to train their
models. Supporting Information Table SI-1 summarizes the
above-mentioned BA predictors, as well as other state-of-the-
art methods that contribute to the broad field of PPI prediction
tools.
Noteworthy, to the best of our knowledge, there is no

publicly available web tool specifically designed to predict and
optimize the BA of diverse protein−peptide complexes, by
considering as a peptide an amino acid sequence with less than
30 residues. Several works have approached this aim
specifically for the identification of binders of the major
histocompatibility complexes MHC-I, II.33,34 However, given
that their training is restricted to MHC data, these models are
not applicable to predict the binding free energy of other
protein−peptide complexes. Besides, the available tools
typically do not leverage the possibility of optimizing the
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primary structure of the peptide to improve the affinity of the
complex.
We evaluated the performance of the above-mentioned

screening tools for estimating the BA of protein−peptide
complexes by testing 100 randomly selected protein−peptide
complexes from the Biolip35 database. This test set contained
complexes with peptides ranging from 4 to 29 amino acids,
coupled to receptors with sizes between 51 and 496 amino
acids. The binding free energy of the complexes covered the
range between −12.6 and −4.6 kcal/mol. The highest
correlation was delivered by Kdeep (R = 0.32), while the
correlation with all of the other methods was in the range R =
[0.13, 0.24] (Supporting Information Table SI-2). This
comparison evidences the rather low dependability of state-
of-the-art screening tools for the prediction of the BA of
protein−peptide complexes.
Given the remarkable scaffold that peptides represent for

drug development, we addressed this issue by developing
machine-learning-based predictors of BA that are specific for
protein−peptide complexes. In addition, we present a
predictor of protein−protein BA that rivals the performance
of the state-of-the-art screening tools built for such systems.
Both predictors are integrated into a novel tool named PPI-
Affinity, which is a web server designed to score protein−
protein and protein−peptide complexes based on their
predicted BA, as well as to optimize the affinity of a complex
by mutating and screening selected residues. With such
functionalities, PPI-Affinity can be employed at early steps of
drug design processes, which are focused on the screening and
optimization of protein/peptide binders for a given protein
target.

■ MATERIALS AND METHODS
In this section, we describe the dataset and the modeling
procedure used to develop both predictors. In both scenarios,
protein−protein and protein−peptide systems, the perform-
ance of the models is evaluated with cross-validation and hold-
out test sets.
Data Collection: Protein−Protein Complexes
We initially retrieved 2 852 protein−protein complexes with
known BA data deposited in the PDBbind (v.2020)36 database.
Subsequently, we curated these data by extracting only dimeric
complexes and removed those in common with the benchmark
used by Vangone and Bonvin21 to assess their model. We
excluded those cases in which the binding affinity values were
reported with measures other than Kd, Ki, or ΔGbind. Likewise,
those instances with imprecise BA values (i.e., reporting ranges
of Kd values instead of precise values) were removed. Cases
with binding free energy values outside the range [−18.1,
−3.1] kcal/mol were also excluded, as these instances are
sparingly represented and the difference between their BA
value and the rest of the distribution was ΔG ≥ 0.5. The
application of such filters rendered a dataset of 833 protein−
protein complexes (Supporting Information Figure SI-1
depicts the distribution of binding free energy values for this
dataset). All of the structures were preprocessed by adding
hydrogens and other missing atoms with MODELLER
v9.2337−40 and PDB2PQR.41

Features Generation
We employed the 3D-structure descriptors implemented in the
protein codification package ProtDCal.42 This program is
accessible via the web server ProtDCal-Suite,43 which also

provides access to other models developed by us using this
codification approach. ProtDCal has a workflow of four
automated steps, which are: (i) residue-wise codification, (ii)
modification based on the vicinity, (iii) residue grouping based
on amino acid types, and (iv) numerical aggregation using
descriptive statistics. The options selected at each step are used
in a combinatorial scheme to generate an array of numerical
descriptors that characterize the input structure. Each
descriptor in the array is the result of the combination of
one residue property (e.g., reside-wise contact order,
RWCO),44 a vicinity operator (e.g., autocorrelation, AC), a
grouping criterion (e.g., nonpolar residues, NPR), and an
aggregation operator (e.g., variance, V); thus, every element in
the array is identified by a unique label (e.g. ,
RWCO_AC_NPR_V). In the Supporting Information Section
SI-1, we provide the configuration file used to compute the
descriptors employed in this study. This configuration
generates 23 040 descriptors for each protein−protein
complex. In ProtDCal, interchain residue contacts are
determined by a maximum spatial distance (d) measured
between the α carbons of the residues. We set up the
calculation of such contacts with a spatial cutoff d = 10 Å.
ProtDCal has been successfully applied by us and other
authors to model post-translational modifications,42,45,46

protein−protein interaction,47 enzyme-like amino acid sequen-
ces,48 critical residues for protein function,49 and antibacterial
peptides.50,51

Modeling Protocol for Protein−Protein Affinity Data

The learning process was carried out with Weka 3.8.4.52

Support Vector Machine (SVM) was selected as the learning
algorithm after performing a preliminary study that showed
that it is the simplest and best-performing solution for
developing the models (Supporting Information Section SI-
2). SVM is a successful approach widely validated in drug
discovery.53,54 This technique has delivered a worthy perform-
ance on small and mid-sized datasets,55 where deeper machine
learning (ML) approaches, such as various neural network
architectures, tend to overfit.56,57 The implementation of SVM
for regression in the package SMOreg58 was employed to
develop the models. We randomly split the collected data into
three datasets: a training set with 653 complexes, a
development set with 90 complexes, and a test set with 90
complexes (Script SI-1). The purpose of the development set
was to monitor the generalization of multiple configurations of
the hyperparameters during the training process. The hold-out
test set was exclusively used to compare the final model with
external predictors.
Initially, every instance in the training set was represented as

a vector of 23 040 molecular descriptors generated with
ProtDCal. The steps of feature selection included the removal
of invariant descriptors and those carrying missing values.
Next, an optimal subset of attributes was searched with a
supervised exploration guided by the error in the prediction of
the binding affinity for cases in the training set. The resulting
optimal subset comprised 26 descriptors, which were used to
train the final models (Supporting Information Section SI-3).
Supporting Information File SI-1 provides a configuration file
for ProtDCal to compute this specific list of descriptors.
We adopted an ensemble learning approach by creating four

partially overlapping subsets of the training data with a
distribution of the output variable flatter than the complete
training set (Supporting Information Figure SI-2). Thus, we
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trained independent models with each subset and combined
their outcomes using the Vote method implemented in Weka
3.8.4,52,59,60 with combination schemes based on the average,
maximum, and minimum predicted values among selected
models.
With each training subset, the hyperparameters of the SVM

were adjusted using a grid search.61 The search space was
defined by the following range of hyperparameter values:

• Complexity (C): 2−5, 2−4.5, 2−4, 2−3.5, 2−3,..., 21, 21.5, 22,
22.5, 23, 23.5 and 24

• Degree (D) of the polynomial function kernel: 1, 2, and
3

The models generated during the search were assessed using
the Pearson’s correlation coefficient (R) (eq 1) of the
estimations in the training data via resubstitution and 10-fold
cross-validation (10-fold CV), as well as in the development
set.

= =

= =
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y y y y

y y y y

( )( )
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The terms yi and y̅ are the actual affinity values and their mean
in the datasets. Analogously, the terms yipred and y̅pred
correspond to the same type of values but as predicted by
the model.
To identify the optimum values of the hyperparameters, we

formulated an ad hoc fitness-robustness score (FRS) (eq 2) as
a function of the correlation coefficient, which combines in a
single measure the performance of a model in terms of
goodness of fit and robustness. The FRS function has an
optimum maximum value at FRS = 1; thus, we selected the
configuration that maximized the FRS function.

= +R R R R RFRS ( ) (( ) ( ) )2
CV TS

2
DEV TS

2
(2)

The terms RTS, RCV, and RDEV are the correlation coefficients
obtained on the training set, in 10-fold CV, and development
set, respectively. R̅ is the arithmetic mean of the performance

on these three tests. The first term of the function aims to
combine the performance on the training set (goodness of fit),
with the performance in cross-validation and development set
(generalization). The next two terms reduce the deviations
between the performance on the training set and the
performance when evaluating in cross-validation and develop-
ment set. These weighting terms improve the robustness of the
selected model by considering the generalization power of the
predictor in addition to the goodness of fit. Overall, such a
unified quantity is a highly informative measure to guide the
optimization of hyperparameters during the modeling. We
intend to continue challenging this formulation in further
studies and applications. Figure 1 summarizes the results of the
optimization of the hyperparameter values in each training
subset. A complete list of all of the intermediate models and
performance measures is provided in Supporting Information
Table SI-3.
All possible combinations with at least two models were

evaluated in the development set to determine the best
ensemble model. We summarized all of the performance
measures for the independent models and the distinct
ensembles in Supporting Information Table SI-4.
Data Collection: Protein−Peptide Complexes

The model was developed with data extracted from the Biolip
database, which also incorporates data from the PDBbind
Protein-Ligand36 database. We downloaded the nonredundant
dataset of Biolip, containing 105 152 entries. Only protein−
peptide complexes with less than 90% of identity between the
binding site′s residues and the full receptor sequence are
included in these data. We extracted the complexes containing
single-chain receptor only and a peptide formed by standard
residues with a minimum length of three residues. Instances
reported with post-translational modifications or fusion
constructs (peptide/nonpeptide) were discarded. Subse-
quently, we selected the cases for which their BA values are
reported in terms of the dissociation (Kd) or inhibition (Ki)
constants only. We excluded the complexes with ambiguous Kd
or Ki values (i.e., reporting a range of values), and those with

Figure 1. Results of the optimization of hyperparameters. The selected model per training subset is marked with a red square and corresponds to
the combination of degree (D) and complexity (log2 C) values that maximized the fitness-robustness score defined in eq 2.
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binding free energies outside the range from −14.4 to −3.6
kcal/mol, as these instances were poorly represented and the
difference between their BA value and the rest of the
distribution was ΔG ≥ 0.5. The curated dataset contained
1149 complexes, with peptides of length ranging between 3
and 29 amino acids and receptors of sizes between 31 and 957
amino acids (Supporting Information Figure SI-3). Hydrogen
atoms and other missing atoms were added to the structures
using MODELLER v9.2337−40 and PDB2PQR.41

Modeling Protocol for the Protein−Peptide BA Data

We used SVM, implemented in the package SMOreg58 in
Weka 3.8.4, following a protocol equivalent to that employed
for the protein-protein model described above. In summary, we
randomly divided the dataset into three subsets: training
dataset (949 instances), development dataset (100 instances),
and test dataset (100 instances) (Script SI-1). Subsequently,
we extracted numerical descriptors from the complexes’
structure using ProtDCal42,43 with the configuration file
summarized in Supporting Information Section SI-1. This
step generated 23 040 molecular descriptors for each instance
in the dataset. Next, we reduced this large multidimensional
space to 37 descriptors through a features selection process
(Supporting Information Section SI-4; a list of the extracted set
of descriptors can be found in the file SI-2).
The training scheme used to develop the final predictor

followed an ensemble approach. Four individual models were
built with partially overlapping subsets of the training set. The
subsets are random samples of the training data with a flatter
distribution of the BA values (Supporting Information Figure
SI-4) compared to the entire training set. This is achieved by
undersampling the region next to the mode value of the
distribution, while keeping the tails. Such transformation in the
distribution of the data allows a balanced error weight along
the entire range of the response variable. Subsequently, we
optimized the hyperparameters of each model independently
and combined their predictions with the Vote method

implemented in Weka 3.8.4, according to the average,
maximum, and minimum ensemble rules.
To create the models, the hyperparameters of the estimator

were adjusted in a grid search following the same methodology
as for the protein−protein model. During the optimization of
the hyperparameters, the performance of the models was
monitored in the training data, in 10-fold CV, and the
development set. The optimum set of hyperparameter values
for each training dataset was selected according to the FRS
defined in eq 2. Figure 2 shows the results of the
hyperparameters tuning process for each training subset. A
complete list of all of the intermediate models and perform-
ance measures can be found in Supporting Information Table
SI-5.
Next, the best ensemble model was selected by evaluating all

possible combinations of models on the development set
(Supporting Information Table SI-6). The selected ensemble
model was evaluated on the hold-out test set of 100 complexes
and compared with other available state-of-the-art protein−
protein and protein−ligand BA predictors. Finally, the ranking
power of the model was assessed on a set of mutants of the
peptide EPI-X4, an endogenous inhibitor of CXCR4 whose
activity was experimentally determined and on a set of
complexes between peptides and the serine proteases
HTRA1 or HTRA3.

■ RESULTS AND DISCUSSION
In this section, we analyze the performance of the developed
models and compare them with other state-of-the-art
predictors.
Performance of the Protein−Protein Model
The best ensemble model contains two out of the four training
subsets, whose individual correlations are R2 = R3 = 0.50. The
ensemble model improved the individual ones achieving a
correlation of R = 0.53 on the development set. The rule of
minimum predicted value was used to build the ensemble
predictor.

Figure 2. Results of the optimization of hyperparameters. The selected model per training subset is marked with a red square and corresponds to
the combination of degree (D) and complexity (log2 C) values that maximized the FRS.
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Recently, Vangone and Bonvin21 developed a model that
predicts the BA based on two structural descriptors: the
network of inter-residue contacts (ICs) and the noninteracting
surface (NIS). The model, named ICs/NIS-based predictor
was implemented in the web server PRODIGY.27 This tool
delivered a much better performance (R = 0.74 and MAE =
1.4) than other state-of-the-art methods on a benchmark set of
79 protein−protein complexes. Thus, we employed this
benchmark set to evaluate our method (Table 1, Test set 1)

against the ICs/NIS-based model, the other two top-ranked
and currently available tools in that assessment, and the
ISLAND method. We estimated the performance of our
ensemble model on this benchmark set and obtained a
correlation coefficient R = 0.62 and MAE = 1.8 kcal/mol (Test
set 1) that ranks our method second, after PRODIGY.
Next, we challenged the predictors with a larger hold-out

test set of 90 complexes, which was initially extracted from the
data collected from the PDBbind (v.2020) protein−protein
dataset (Table 1, test set 2). In this test, our model renders a
correlation coefficient of R = 0.50, with an error MAE = 1.8
kcal/mol (Test set 2), performance which is only marginally
inferior to that obtained in the benchmark set of Vangone and
Bonvin21 (R = 0.62; MAE = 1.8 kcal/mol). The performance
of ISLAND was diminished with respect to our method.
Nevertheless, ISLAND delivered consistent results, in general
superior to those delivered by other methods, in both test sets.
The other predictors (PRODIGY, DFIRE, CP_PIE) show a
large decrease in their performance with respect to their results
in the test set 1 (Table 1, test set 1), with PRODIGY being the
second best with a correlation coefficient R = 0.31 and MAE =
2.5 kcal/mol. Such a dramatic decay in the predictions suggests
the presence of overfitting toward the previous benchmark set,
specifically in the case of PRODIGY. Nonetheless, the analysis
of the performance of the other predictors is hindered by the
lack of applicability domain (AD) definition for using the
methods. The absence of a defined AD limits the analysis of
the errors of the predictions, as it is not possible to examine
whether test samples are simply outside the scope of these
predictors or there is a specific structural issue that affects the
quality of the prediction.
In short, the data evidence the generalization achieved by

our predictor, which performs consistently well in different

external test sets. Supporting Information Figure SI-5 displays
plots of experimental versus predicted BA values for PPI-
Affinity in both test sets.
Next, we evaluated the performance of PPI-Affinity on a set

of mutants taken from the SKEMPI v2.062 dataset (Figure 3).

This database reports the binding affinity changes of 7085
mutations of 345 protein−protein interactions for which the
structure of the complex has been resolved. We selected a
subset from this dataset by applying the following filtering
steps: (I) we extracted the dimeric complexes having at least
30 amino acids in each protein sequence; (II) we removed the
complexes overlapping between the selected data, the
PDBbind (v.2020) dataset, and the benchmark set of Vangone
and Bonvin;21 and (III) we removed the wild-type systems
with more than one binding affinity value reported, as well as
all mutants with ambiguous or unreported binding affinities.
The output of the filtering steps reduced the dataset to 34
wild-type complexes and 182 mutants. We fed the conformed
test set to PPI-Affinity. Eight wild-type complexes and their
related mutants were found outside the applicability domain of
the model. Thus, the final test set contained 26 wild-type
structures and 151 mutants. The assessed mutants featured
between one and six mutations per protein sequence, with 80%
of the structures accounting for only one mutation. The
binding free energy of all of the complexes was in the range of
−16.3 to −5.5 kcal/mol.
The performance of PPI-Affinity (R = 0.78 and MAE = 1.4

kcal/mol) on the SKEMPI dataset is superior to that obtained
in the Vangone and Bonvin benchmark21 (Table 1, Test set 1)
and in the 90 protein−protein complexes taken from the
PDBbind (v.2020) database (Table 1, Test set 2). When
considering only the wild-type complexes, PPI-Affinity
delivered a performance of R = 0.77 and MAE = 1.1 kcal/
mol. These results evidence the robustness of our protein−
protein model in a third external dataset, at the time that show
the ability of PPI-Affinity to characterize the changes upon
mutations of protein−protein complexes.

Table 1. Summary of the Evaluation of PPI-Affinity and
State-of-the-Art BA Predictors on Two Sets of Protein−
Protein Affinity Dataa

test set 1 test set 2

method R MAE (kcal/mol) R MAE (kcal/mol)

PRODIGY 0.74 1.4 0.31 2.5
DFIRE 0.60 4.6 0.10 25.4
CP_PIE −0.52 8.8 −0.10 11.0
ISLAND 0.38 2.1 0.27 2.2
PPI-Affinity 0.62 1.8 0.50 1.8

aThe performance is expressed as the Pearson’s correlation coefficient
(R) between experimental and predicted BA. The test set 1
corresponds to the benchmark employed by Vangone and Bonvin,21

while the test set 2 corresponds to the hold-out set of 90 data points
taken from PDBbind (v.2020). The performance for the other
methods on test set 1 was reported by Vangone and Bonvin.21 The
negative values of the correlation coefficients indicate that the
corresponding method predicts unbinding free energy.

Figure 3. Performance of PPI-Affinity on the test set of 26 wild-type
complexes and 151 mutants of protein−protein affinity data points
taken from the SKEMPI dataset. The performance is reported as the
Pearson’s correlation coefficient (R) between experimental and
predicted BA. The green points correspond to BA values of the
wild-type complexes, and the orange points correspond to the BA
values of the mutants.
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Additionally, we assessed the performance of PPI-Affinity
against the LUPIA26 classifier. LUPIA uses a threshold value to
classify as “high” or “low” the binding affinity of protein−
protein complexes. This evaluation (Supporting Information
Section SI-5) evidenced the shortcomings of discretizing the
BA values to train classifiers rather than regressors models.
Taken together, the performance of our protein−protein
model on several tests ranks our ensemble model on the top of
state-of-the-art fast protein−protein BA predictors.
Performance of the Protein−Peptide Model
The best ensemble model was obtained by two out of the four
training subsets, improving their performances (R1 = 0.53, R3 =
0.54) to R = 0.56 on the development set. The rule of
maximum value was used to build the ensemble model. The
model was assessed on the test set of 100 protein−peptide
complexes initially hold-out from the data extracted from the
Biolip database (Supporting Information Figure SI-6). Here,
we compared the results of our method with state-of-the-art
protein−protein and protein−ligand BA predictors. The
considered tools include Kdeep and RF-Score for protein−
ligand complexes, as well as the above-presented PRODIGY,
DFIRE, and CP_PIE methods. ISLAND requires a minimum
size of 20 amino acids for each protein sequence. For this
reason, the tool was applied to the assessment of only the
protein−protein model.
Our protein−peptide affinity model outperformed all the

other tools, showing a correlation coefficient of R = 0.55 with
MAE = 1.1 kcal/mol (Table 2). The low correlations values

delivered by other state-of-the-art tools can be related to the
fact that the functions of Kdeep and RF-Score are fitted
primarily using small organic ligands.63,64 This suggests that
fitting with mostly small ligand data cannot capture the
differences imposed by the larger size of the peptides, as well as
the diversity of peptide interactions with the target and the
solvent.
Case Study I: Ranking the Affinity of Mutants of EPI-X4
EPI-X4 (Endogenous Peptide Inhibitor of CXCR4) is a
fragment of albumin identified as an endogenous antagonist of
the CXC chemokine receptor 4 (CXCR4) by Zirafi et al.65

Given the implication of CXCR4 in viral (HIV) infection,
inflammation and cancer,66,67 this peptide represents a highly
promising scaffold to develop therapeutic drugs targeting the
CXCR4 receptor.
Recently, mutants of EPI-X4 have been screened to identify

derivatives with enhanced stability and affinity. For this, the
affinity values (in terms of IC50 nanomolar, nM) of EPI-X4 and
56 derivatives to CXCR4 were estimated using an antibody
competition assay.67 The scheme of this assay is based on the
competitive binding of a fluorescently labeled anti-CXCR4
antibody (clone 12G5) with CXCR4 ligands (Supporting
Information Section SI-6).67 These derivatives are peptides
with size in the range of 6−16 amino acids. From the
experiments, 26 mutants out of 30 active (IC50 < 10 000nM)
derivatives were found to be more active compared to EPI-X4.
Here, we employed these data to evaluate the ranking power of
our protein−peptide affinity model. For doing this, we use the
enrichment factor (EFI),

68 defined as (eq 3):

= [ ]
[ ]
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where I represents a fixed number of top-ranked instances
based on predicted values; Nactive

topi is the number of active
peptides, within the top I instances of the dataset; Nactive is the
number of active peptides; and Ntotal is the total number of
peptides in the whole dataset. Peptides with IC50 < 10 000 nM
were defined as active for an initial test. In a second and more
stringent evaluation, the active peptides were considered as
those more active than EPI-X4.
The structures of the complexes, formed by CXCR4 and

each peptide mutant, were generated via homology modeling

Table 2. Correlation Coefficient (R) of Protein−Protein
and Protein−Ligand BA Predictors on the Test Set of 100
Protein−Peptide Complexesa

method R MAE (kcal/mol)

PRODIGY 0.13 1.9
DFIRE 0.29 8.7
CP_PIE −0.28 9.0
Kdeep* 0.32 10.7
RF-Score* 0.23 1.8
PPI-Affinity 0.55 1.1

aProtein−ligand methods are marked with a star. The negative values
of the correlation coefficients indicate that the corresponding method
predicts unbinding free energy.

Figure 4. Performance of protein−protein and protein−ligand BA predictors on the set of 56 derivatives of EPI-X4. The performance of the
methods is based on the enrichment factor (EF) obtained among the top 5, 10, and 15 ranked candidates. Two results are shown per tool, one
corresponding to the activity test (AT), and the second corresponding to the peptides with an affinity higher than EPI-X4 (ATEPI‑X4).
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using as a template the structural model of the complex
CXCR4/EPI-X4, reported by Sokkar et al.69,70 We estimated
the BA of each complex with different predictors, as well as the
associated enrichment factors.
Figure 4 shows the results of the tests corresponding to (1)

the conventional activity test using the activity threshold
determined by the competition assay (IC50 = 10 000 nM) and
(2) the peptides with an affinity higher than EPI-X4. PPI-
Affinity achieved the maximum enrichment EF5 = EF10 = EF15
= 1.9 for this test, i.e., the 15 top-ranked instances according to
the PPI-Affinity estimation are active. In the case of the
stringent test, taking only those with higher affinity than EPI-
X4 as active, the maximum EF was obtained within the top 10
peptides, i.e., EF5 = EF10 = 1.9, while the enrichment within
the top 15 derivatives also reached a high value EF15 = 1.8. The
high enrichment factor within the top 5, 10, and 15 peptides,
representing more than 25% of the dataset, evidenced the
remarkable ranking capabilities of PPI-Affinity. The other tools
show moderate to high enrichment values although below the
level reached by PPI-Affinity (Figure 4). Noteworthy are
CP_PIE and Kdeep, which deliver a steady high performance
in the different tests.
Case Study II: Ranking the Affinity of Peptides for the PDZ
Domains of HtrAs

High-temperature requirement serine proteases (HtrAs) are
involved in many physiological processes and neurodegener-
ative diseases such as Alzheimer’s disease and CARASIL.71

These proteases are largely regulated by an allosteric
mechanism whose initial step is the interaction of polypeptide
chains with the peripheric PDZ domain. Here, we challenged
PPI-Affinity with a series of peptides bound to PDZ domains
of two human HtrAs: HTRA1 and HTRA3.
For these sets of protein−peptide interactions, we compared

the relative ranking based on the binding affinity predicted by
PPI-Affinity to the ranking based on the experimentally
determined IC50 values

72 (Tables 3 and 4).
The prediction of PPI-Affinity suggests that three of the

peptides have more affinity for the PDZ domain of HTRA1

than the experimentally determined best binder DSRIWWV
(in bold, Table 3). However, the calculated binding affinities of
those peptides differ from that of DSRIWWV by only 0.1, 0.4,
and 0.7 kcal/mol (for WDKIWHV, GWKTWIL, and
DSAIWWV, respectively). These differences are very small
and within the MAE of PPI-Affinity (Table 2).
The rest of the peptides are correctly predicted by the

method as weaker binders than DSRIWWV to the PDZ
domain of HTRA1. We note, however, that the binding energy
differences for most of these peptides also fall within the MAE
reported for our method based on the test set of protein−
peptide affinity (Table 3).
Interestingly, even the two peptides (DIGPVCFL and

EVKIMVV) at the border of the applicability domain of our
method are correctly predicted as weaker binders to the PDZ
domain of HTRA1 compared to DSRIWWV. Nevertheless, the
predicted values for peptides that are outside the applicability
domain of PPI-Affinity should be considered with care. The Kd
of the complex between HTRA1 and DSRIWWV is
experimentally reported as 1.3 ± 0.2 μM, which corresponds
to ΔG = −8.2 ± 0.1 kcal/mol at the experimental temperature
of 301.15 K. This value is in excellent agreement with the value
of −8.1 kcal/mol predicted by PPI-Affinity (Table 3).
We also tested our method on peptides binding to the PDZ

domain of HTRA3 (Table 4). In this set of protein−peptide
complexes, eight systems are outside the applicability domain
of PPI-Affinity.
As shown in Table 4, only one peptide (FGAWV) is

incorrectly predicted to have better BA for HTRA3 than the
best experimental binder FGRWV. We note that FGRWV lies
outside the applicability domain of the model, and this
prediction should be taken with caution.
In addition, we measured the overall ranking power of PPI-

Affinity by calculating Kendall’s correlation coefficient73 on
both test sets, HTRA1 and HTRA3 protein−peptide
complexes (Table 5). The results obtained with PRODIGY,
Kdeep, RF-Score, DFIRE, and CP_PIE are also shown for
comparison. The binding affinity values delivered by each tool
are listed in Supporting Information Section SI-7.

Table 3. Ranking of BA of Protein−Peptide Interactions in
HTRA1 as Predicted by PPI-Affinity and Based on the
Experimental IC50 Values

c

PPI-Affinity experimental

ranking
ΔG

(kcal/mol) ranking (IC50 (μM))a

(1) DSAIWWV −8.8 (1) DSRIWWV 0.9 ± 0.1
(2) GWKTWIL −8.5 (2) DARIWWV 1.3 ± 0.1
(3) WDKIWHV −8.2 (3) DSAIWWV 2.5 ± 0.4
(4) DSRIWWV −8.1 (4) WDKIWHV 2.8 ± 0.3
(5) DARIWWV −8.0 (5) ASRIWWV 2.8 ± 0.3
(6) ASRIWWV −8.0 (6) DSRIWWA 3.5 ± 0.9
(7) DIETWLL −7.8 (7) DSRIWAV 6 ± 1
(8) DSRIWWA −7.3 (8) GWKTWIL 7.7 ± 0.6
(9) DSRAWWV −7.3 (9) DSRAWWV 13 ± 1
(10) DSRIWAV −7.2 (10) DIGPVCFL 16 ± 3
(11) DIGPVCFLb −7.1 (11) DIETWLL 23 ± 3
(12) EVKIMVVb −7.0 (12) EVKIMVV 24 ± 8
(13) DSRIAWV −6.9 (13) DSRIAWV 40 ± 5

aValues taken from ref 72. bProtein−peptide structures that are at the
border of the applicability domain of PPI-Affinity. cNo protein−
peptide structure is outside the applicability domain.

Table 4. Ranking of BA of Protein−Peptide Interactions in
HTRA3 as Predicted by PPI-Affinity and Based on the
Experimental IC50 Values

PPI-Affinity experimental

ranking ΔG (kcal/mol) ranking (IC50 (μM))a

(1) FGAWVc −7.7 (1) FGRWV 0.6 ± 0.1
(2) FGRWVb −7.5 (2) RSWWV 0.6 ± 0.1
(3) FGRWIc −7.5 (3) FGAWVb 0.9 ± 0.1
(4) RSWWV −7.4 (4) FGRWIb 1.0 ± 0.1
(5) FGRWFc −7.3 (5) GRWV 1.0 ± 0.1
(6) GRWVb −7.2 (6) FARWVb 1.1 ± 0.2
(7) FGRWAb −7.1 (7) RWV 1.3 ± 0.1
(8) FGRAVb −6.9 (8) FGRWL 2.9 ± 0.3
(9) FGRWLb −6.6 (9) FGRWA 3.5 ± 0.3
(10) WVc −6.6 (10) WVb 4.7 ± 0.4
(11) WAc −6.5 (11) FGRWFb 7.7 ± 0.8
(12) FARWVc −6.4 (12) WAb 14 ± 1
(13) WGc −6.2 (13) WGb 22 ± 3
(14) RWVb −5.2 (14) FGRAV 270 ± 110

aValues from ref 72. bProtein−peptide structures are at the border of
the applicability domain of PPI-Affinity. cProtein−peptide structures
that are outside the applicability domain of PPI-Affinity.
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Kendall’s tau coefficient is a robust nonparametric measure
highly suitable to discriminate correlated from uncorrelated
variables. This measure involves two main magnitudes: the
number of concordant and discordant pairs. Two observations
(xi, yi) and (xj, yj) are classified as a concordant pair if xi > xj,
and yi > yj, or vice versa xi < xj and yi < yj. If none of these
conditions are true, the pair is known as discordant.
The Kendall’s tau correlation coefficient (τ) is defined as (eq

4)

=
+ + * + +

N N

N N N N N N( ) ( )
c d

c d t c d u (4)

where Nc and Nd are the number of concordant and discordant
pairs, respectively; Nt is the number of ties in the order of the
binding affinity determined by PPI-Affinity; and Nu is the
number of ties in the experimental binding affinity. The
Kendall’s correlation coefficient is equal to 1 if the calculated
ranking of the peptides completely agrees with the ranking
determined experimentally.
Importantly, here we correlate IC50 values with predicted

binding free energy changes; these magnitudes are expected to
be linked by a nonlinear relation, which then violates the
linearity requirement for the proper interpretation of Pearson’s
correlation coefficient. Besides, the small size of the data

induces violations of the bivariate normality requisite of this
coefficient. Consequently, the use of a robust nonparametric
measure such as Kendall’s tau coefficient is a requirement to
achieve a correct interpretation of the correlation tests.
The Pearson’s correlation coefficient obtained by PPI-

Affinity (R = 0.02) in the HTRA3 test set evidences the lack of
correlation with the experimentally measured IC50 values.
Beyond the previously noted shortcomings of Pearson’s
coefficient to assess these data, this result can be also a
consequence of half of the peptides in the test set being outside
the applicability domain of PPI-Affinity. For HTRA1 binders,
where all cases are within the applicability domain, PPI-Affinity
delivers the highest correlation coefficient value (R = 0.63).
In terms of Kendall’s tau coefficient, PPI-Affinity produces

the highest values for both targets (τ = 0.59 and τ = 0.42 for
HTRA1 and HTRA3, respectively), evidencing its better
ranking power compared to other state-of-the-art predictors.
Interestingly, RF-Score gives the second-best performance on
the HTRA1 test set with τ = 0.56, which is diminished by
about half on the HTRA3 test set (τ = 0.27). Conversely,
Kdeep’s performance is close to PPI-Affinity’s on the HTRA3
test set (τ = 0.41), but Kdeep delivers the lowest positive
Kendall’s tau value on the HTRA1 test set (τ = 0.16). The
weak performance of PRODIGY on both test sets might be
related to the limitations of its protein−protein affinity
predictor to evaluate smaller protein−peptide complexes. An
important advantage of PPI-Affinity is that, thanks to two
tailored models for protein−protein and protein−peptide
complexes, PPI-Affinity can deliver comparable performance
levels for both types of biomolecular systems.
In short, the evaluation of BA predictors on different tests

and test sets evidenced that state-of-the-art BA predictors,
either intended for protein−protein or protein−ligand
complexes, deliver low accuracy in the prediction of the BA
of protein−peptide complexes. Although it improves the
accuracy of the state-of-the-art approaches only slightly, PPI-
Affinity is a solution to that issue since it delivers a significantly
better and robust performance among different tests. This fact

Table 5. Correlation of IC50 Values with the Estimations
from PPI-Affinity and Other State-of-the-Art BA Predictors
on the Sets of HTRA1’s and HTRA3’s PDZ Binders

R τ

method HTRA1 HTRA3 HTRA1 HTRA3

PRODIGY 0.25 0.29 0.18 0.01
DFIRE 0.59 0.24 0.38 0.15
CP_PIE −0.11 −0.03 −0.25 −0.08
Kdeep* 0.38 0.11 0.16 0.41
RF-Score* 0.56 0.13 0.56 0.27
PPI-Affinity 0.63 0.02 0.59 0.42

Figure 5.Workflow of the three modules included in PPI-Affinity. For each module, the required input data and associated steps are indicated. The
main difference among them lies in the input data: the Binding Af f inity predictor module receives as input a set of protein−protein/peptide
complexes (in PDB format); the Build & Predict module generates the complexes from a template file and a list of amino acid sequences (in FASTA
format) provided by the user; and the Protein Engineering module receives as input only a template model, generates a list of derivatives for one of
the protein/peptide contained in the PDB file, and calculates homology models for all created mutants. Regardless of the module, once the PDB
files have been prepared, PPI-Affinity computes the structural descriptors with ProtDCal, estimates the BA values with the machine learning
models, and returns the list of derivatives ranked by their BA values.
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tackles the inherent issues in generalization and overfitting that
apparently affect other predictors. The shortcomings in the
accuracy of predictions of absolute binding free energy values
are to a large extent a consequence of the inherent deviations
in the experimental data available for training, which arise from
uneven standards under the experimental conditions and
measurement procedures. Nonetheless, within such a noisy
scenario, the support vector machine models developed by us
allow making predictions that improve to some extent the state
of the art at the same time of showing steady performance in
both absolute binding affinity prediction and ranking assess-
ments.
Web Server Implementation

We implemented PPI-Affinity as a web server to facilitate the
use of our models. PPI-Affinity is a suite organized in three
modules, which are summarized below by order of increasing
complexity of their functionality.

Binding Affinity Predictor. This method is the direct
application of the prediction models in a set of PDB files with
protein−protein and protein−peptide complexes that should
be provided by the users. The module has the functionality to
characterize diverse complexes, whose structures were
obtained from external sources, based on their binding affinity.

Build & Predict. This module follows the same purpose as
the previous one. However, instead of receiving coordinate files
with the complexes of interest, it only requires a template file
(in PDB format) and a list of amino acid sequences (in FASTA
format). Then, the server builds five structural homology
models for each sequence in the list, using MODELLER, and
selects the structure with the lowest DOPE as the best
candidate to represent the complex. Subsequently, it scores all
the complexes using the predictor of binding affinity. The
Build & Predict module is particularly suitable for screening
structurally similar complexes for which no structure has been
elucidated.

Protein Engineering. This third and most comprehensive
module allows for the automatic generation and scoring of
mutations at the interface of the complexes, which aims to
optimize the affinity of these complexes. Figure 5 depicts the
workflow of the module, which encompasses the next steps:
Step 1: Template Input. The user provides an input

structure of the complex (in PDB format) and optionally the
amino acid sequences of the chains in FASTA format. In
addition, the user must specify which chain will be optimized.
Step 2: Mutants Generation. Next, a maximum of 10 000

derivatives is constructed for the specified chain. The
generation of mutants is controlled by the following
parameters: the maximum number of modifications to the
reference sequence, deletion and mutation probabilities,
maximum molecular weight, type of mutations, and a
mutability vector whose elements take value 0 for residues
that remain unmodified and a value between 0 and 1
representing the probability of modifying each position. The
types of mutations are defined by groups of amino acids; the
types are “Conservative” formed by the groups Polar
(NCQHSTG), Acid (DE), Basic (KR), Non-polar (AILMPV),
and Aromatic (WYF) residues; “Conservative extended” for
Polar extended (NCQHSTGDEKR) and Non-polar extended
(AILMPVWYF) residues; and “Unrestrained” allows the
residues to be changed by any other type of residue.
Step 3: Homology Modeling. In this step, five structural

models per derivative are generated with MODELLER. Among

them, the structure with the lowest DOPE value is selected as
the best model for the corresponding mutant.
Step 4: BA Estimation. The binding free energy is calculated

using either the protein−protein or the protein−peptide
affinity predictor. The selection of the estimator depends on
the lengths of the chains in the structure; if a chain contains
less than 30 residues, the protein−peptide predictor is used,
otherwise the protein−protein estimator is applied.
Step 5: Ranking of Mutants. Finally, the mutants will be

arranged in decreasing or increasing order of affinity, and either
all or a selection of top candidates are returned to the user.
The two sorting schemes allow the use of this module not only
as an optimizer of the complex but also to spot mutations that
can largely destabilize the complex of interest.
Applicability Domain
Defining the applicability domain (AD) of a model is an
important step before the deployment of a predictor as it
allows to provide insights into the reliability of the estimations
in new systems.74 Here, the AD is the subspace defined by the
value range of the variables of the models (structural
descriptors) in our training dataset (Supporting Information
Tables SI-7 and SI-8). Thus, the descriptors’ value of a new
complex is checked to determine whether this structure is
within the AD of the model. The result of this analysis is
provided to the users alongside the predicted binding affinity
value. Estimations associated with instances outside the AD
should be interpreted with special care and probably
corroborated by other methods. Additionally, Supporting
Information Table SI-9 summarizes the sizes of the peptides
and receptors used to train and test the protein−peptide
model. Supporting Information Tables SI-10 and SI-11 present
the descriptive statistics of the training, development, and test
sets used in the modeling.
Implementation Details
The frontend of PPI-Affinity was implemented with the
Python Framework Django v3.1.1 for uploading and validating
the user data. The backend, which constitutes the core of the
program, was programmed in Python 3. Internally, PPI-Affinity
uses MODELLER37−40 to create the new homology structures.
ProtDCal42 is used to calculate the structural descriptors
required by the SVM models, and Weka 3.8.452 is the
interpreter of these predictors to predict the binding free
energy of the generated structures. Finally, a queuing system is
employed for the management of the jobs sent by the users.

■ CONCLUSIONS
We developed PPI-Affinity, a binding free energy predictor
targeting protein−protein and protein−peptide complexes
specifically. This fast-screening tool moderately outperformed
the predictions and ranking power of similar empirical
predictors. The performance of the models was evaluated on
various test sets, which include a largely used benchmark set
for empirical binding free energy predictors and scoring
functions, as well as new augmented datasets gathered in this
work from BioLip and PDBbind. We also evaluated the ranking
power of the protein−peptide model on a set of EPI-X4
derivatives and HtrAs peptide binders. Altogether, these tests
highlight PPI-Affinity, not only as a top-ranked predictor but
also as the most robust tool with respect to performance in
different tests.
Furthermore, we implemented our models in a freely

available web server that incorporates diverse functionalities
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that allow the screening of protein complexes as well as the
engineering of the amino acid composition at the interface of
the complex, to enhance the binding affinity or to spotlight
critical mutants that may destabilize the interaction. The PPI-
Affinity web server is thus a versatile tool with a direct impact
on the design of peptide binders as well as in protein
engineering and design.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00020.

Setup of parameters used for the calculation of the
structural descriptors (Supporting Information Section
SI-1); preliminary study of Machine Learning (ML)
techniques (Supporting Information Section SI-2);
feature selection process for the protein−protein BA
modeling (Supporting Information Section SI-3);
feature selection process for the protein−peptide BA
modeling (Supporting Information Section SI-4);
evaluation of PPI-Affinity and a state-of-the-art classifier
(Supporting Information Section SI-5); assays used to
determine the BA of EPI-X4 derivatives against the
CRCX4 receptor (Supporting Information Section SI-
6); generation and ranking of peptide binders to the
PDZ domains of HTRA1 and HTRA3 (Supporting
Information Section SI-7); tabular description of PPI-
Affinity and other state-of-the-art PPI prediction tools
(Supporting Information Table SI-1); correlation
coefficient (R) of BA predictors on the test set of 100
protein−peptide complexes (Supporting Information
Table SI-2); performance of intermediate models for
the protein−protein BA modeling during the hyper-
parameters tuning process (Supporting Information
Table SI-3); performance of individual and ensemble
models for the protein−protein complexes (Supporting
Information Table SI-4); performance of the inter-
mediate models for the protein−peptide modeling
during the hyperparameters tuning process (Supporting
Information Table SI-5); performance of individual and
ensemble models for the protein−peptide complexes
(Supporting Information Table SI-6); applicability
domain of the protein−protein model (Supporting
Information Table SI-7); applicability domain of the
protein−peptide model (Supporting Information Table
SI-8); minimum and maximum values of the sequences’
length of peptides and proteins (Supporting Information
Table SI-9); descriptive statistics of the protein−protein
data sets (Supporting Information Table SI-10);
descriptive statistics of the protein−peptide data sets
(Supporting Information Table SI-11); distribution of
ΔG bind values in the dataset of protein−protein
complexes (Supporting Information Figure SI-1);
distribution of ΔG bind values in the datasets of the
protein−protein ensemble model (Supporting Informa-
tion Figure SI-2); characterization of the dataset of
protein−peptide complexes (Supporting Information
Figure SI-3); distribution of ΔG bind values in the
datasets of the protein−peptide ensemble model
(Supporting Information Figure SI-4); plots of exper-
imental vs predicted on the test sets of protein−protein
BA data (Supporting Information Figure SI-5); plot of

experimental vs predicted on the test set of protein−
peptide BA data (Supporting Information Figure SI-6)
(PDF)
Python script used to randomly split the datasets into
training, development, and test subsets (Script SI-1);
configuration file for ProtDCal to compute the
descriptors of the protein−protein model (File SI-1);
configuration file for ProtDCal to compute the
descriptors of the protein−peptide model (File SI-2);
binding affinity predictions of PPI-Affinity and state-of-
the-art tools on the benchmark of 79 protein−protein
complexes employed by Vangone and Bonvin21 (File SI-
3); binding affinity predictions of PPI-Affinity and state-
of-the-art tools on the hold-out set of 90 protein−
protein complexes taken from PDBbind (v.2020) (File
SI-4); binding affinity predictions of PPI-Affinity and
state-of-the-art tools on the hold-out set of 177 (26 wild-
type and 151 mutants) protein−protein complexes taken
from the SKEMPI v2.0 dataset (File SI-5); binding
affinity predictions of PPI-Affinity and state-of-the-art
tools on the hold-out set of 100 protein−peptide
complexes taken from the Biolip database (File SI-6);
binding affinity predictions of PPI-Affinity and other
state-of-the-art tools on the test set of protein−peptide
complexes containing EPI-X4 and 56 derivatives coupled
to the CXCR4 receptor (File SI-7); and summary of the
protein−protein and protein−peptide complexes used in
the training, validation, and test of the PPI-Affinity
models (File SI-8) (ZIP)
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