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Abstract

Protein–protein interactions (PPIs) play a significant role in nearly all cellular and biological activities. Data-driven machine learning
models have demonstrated great power in PPIs. However, the design of efficient molecular featurization poses a great challenge
for all learning models for PPIs. Here, we propose persistent spectral (PerSpect) based PPI representation and featurization, and
PerSpect-based ensemble learning (PerSpect-EL) models for PPI binding affinity prediction, for the first time. In our model, a sequence
of Hodge (or combinatorial) Laplacian (HL) matrices at various different scales are generated from a specially designed filtration
process. PerSpect attributes, which are statistical and combinatorial properties of spectrum information from these HL matrices, are
used as features for PPI characterization. Each PerSpect attribute is input into a 1D convolutional neural network (CNN), and these
CNN networks are stacked together in our PerSpect-based ensemble learning models. We systematically test our model on the two
most commonly used datasets, i.e. SKEMPI and AB-Bind. It has been found that our model can achieve state-of-the-art results and
outperform all existing models to the best of our knowledge.
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Introduction
A wide range of biological processes and mechanisms,
including cell proliferation, signaling, metabolism,
immune system and protein transport, are governed
or coordinated by the complex networks of protein–
protein interactions (PPIs) [20, 21]. The great size and
diversity of PPIs offer a highly selective and tunable way
to modulate protein activities and pathways. Protein
mutations and genetic variations can affect protein
folding and stability, change the binding affinities of
protein interactions and consequently lead to disease
and drug resistance [51]. The understanding of PPIs, in
particular PPI upon mutations, is vital to various biomed-
ical applications, including disease-associated mutation
analyses, drug design and therapeutic intervention
[20, 21]. Experimentally, various methods have been
developed to determine protein assembly structures at
different resolutions. Among them, atomic resolution
tools include X-ray crystallography, nuclear magnetic
resonance and cryo-electron microscopy, and residual

resolution tools include cross-linked mass spectrometry,
hydrogen/deuterium exchange and mutagenesis. Fur-
ther, PPI binding affinity and stabilities can be measured
by techniques, such as isothermal titration calorimetry,
surface plasmon resonance, fluorescence and blue
native polyacrylamide gel electrophoresis. However,
experimental studies for structures and binding affinity
are time-consuming, laborious and expensive. They
usually require protein purification. Moreover, the exper-
imental analysis of mutation effects needs both wild-
type and mutated proteins, which are very challenging to
obtain. Currently, only about 6.5% of the known human
interactome has structural information [40].

Fast and efficient computational methods and models
have been developed for the analysis of PPIs. In particular,
significant efforts have been made for the evaluation of
PPI binding affinity upon mutation (��G). These models
can be generalized into three categories, including
molecular dynamic (MD) based approaches, statistical
energy-based models and machine learning models.
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MD-based models, including FoldX [22], Rosetta [29],
zone equilibration of mutants (ZEMu) [13], single amino
acid mutation based change in binding free energy
(SAAMBE) [49] and others [20], usually characterize
the binding affinity of PPIs with various physical
energy terms, including van der Waals interactions,
electrostatic energies, hydrogen bonds, solvation energy,
etc. Mutation effects are considered by modeling confor-
mational changes with rotamer and structure ensemble
approaches. Different from the MD models, statistical
energy-based approaches, including BindProfX [68],
BeAtMuSiC [12], contact potentials [38], Profile-score [58]
and Dcomplex [32] use various intermolecular potentials
extracted from experimental structures to study PPI
binding affinity. These intermolecular potentials can be
constructed based on the contacts at atomic, residual
or other coarse-grained levels. Recently, data-driven
machine learning models have achieved state-of-the-art
results in PPI analysis [54], due to great advancements
in computational power, learning models and data
accumulation.

Various PPI databases are established during the past
few decades, including Alanine scanning energetics
database (ASEdb) [59], PPIs thermodynamic database
(PINT) [30], structural kinetic and energetic database
of mutant protein interactions (SKEMPI) [37], database
of binding affinity change upon mutations (DACUM)
[18], antibody-bind database (AB-Bind) [55], protein–
protein complex mutation thermodynamics (PROXi-
MATE) [26] and kinetic and thermodynamic database of
mutant protein interactions (dbMPIKT) [31]. Recently, an
updated version SKEMPI 2.0 has been constructed [24].
It combines several databases including SKEMPI, AB-
Bind, PROXiMATE and dbMPIKT, together with manually
curated data from the literature. In total, it has 7085
mutations, including about 3000 single point alanine
mutations, about 2000 single point non-alanine muta-
tions and roughly 2000 multiple mutations, on various
types of protein complexes, such as protease-inhibitor,
antibody-antigen and TCR-pMHC complexes. With the
ever-increasing PPI data, a great amount of data-driven
learning models have been developed [20, 54], including
mCSM [52], ELASPIC [57], BindProf [2], MutaBind [69], iSEE
[19], MuPIPR [71], ProAffiMuSeq [25], GeoPPI [34], etc. In
general, these data-driven models can be classified into
two types: featurization-based machine learning models
and end-to-end deep learning models. For the first type,
different types of PPI information from sequences, inter-
residue interactions, evolutionary conservation, dynamic
properties, energy terms, pharmacophore descriptors,
structure-based descriptors and others are used as input
features for machine learning models, such as support
vector machine, random forest, gradient boost tree, etc.
Note that these input features are manually generated
by using mathematical, physical, chemical and biological
models. For end-to-end learning models, proteins are
usually represented as surfaces, graphs or networks
with embedded vectors or one-hot-vectors [3, 16]. The

intrinsic features for PPIs are automatically learned
and implicitly represented in deep learning models. The
most commonly used deep learning models for PPIs are
graph neural networks and geometric learning models.
Even with the great advancements, generating a highly
efficient molecular featurization, which is key to the
performance of learning models, remains a challenging
problem [35, 50].

Recently, advanced mathematics, in particular topo-
logical data analysis (TDA) [15, 72], is used in molecu-
lar representation and featurization [4, 7, 36, 43]. Their
combination with learning models have achieved great
success in various steps of drug design, including protein-
ligand binding affinity prediction [6–8, 47, 48], protein sta-
bility change upon mutation prediction [4, 5], toxicity pre-
diction [9, 27, 65], solvation free energy prediction [61, 62],
partition coefficient and aqueous solubility [66], binding
pocket detection [70] and drug discovery [17]. Outstand-
ing performance has been consistently achieved in D3R
Grand challenge [44–46]. In particular, TopNetTree has
demonstrated greater power in predicting binding affin-
ity change upon mutation [63]. It has outperformed all
existing models and provided great insights for the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
mutations [10, 64]. Motivated by the great success, we
have proposed persistent spectral based machine learn-
ing models (PerSpect-ML) and use them in drug design
[33, 36]. Mathematically, spectral models, including spec-
tral graph theory [11, 56], spectral simplicial complex [1,
14, 23, 41] and spectral hypergraph [33], study the topo-
logical properties with algebraic tools, including charac-
teristic polynomial, eigenvalues, eigenvectors and other
eigenspectrum properties. The spectral information is
used for the characterization of biomolecular structures
and interactions [33, 36].

Here, we propose persistent spectral based ensemble
learning (PerSpect-EL) models for PPI binding affinity
change upon mutation, for the first time. PPIs at the
molecular level are represented by a series of simplicial
complexes generated from a designed filtration process.
Hodge (or combinatorial) Laplacian (HL) matrixes can
be systematically constructed on these simplicial com-
plexes. The persistence and variation of the spectral
attributes, which are statistical and combinatorial prop-
erties of Laplacian eigenvalues, are used as input feature
vectors for 1D convolutional neural network (CNN) mod-
els. To combine the contributions from these different
types of PerSpect attributes, we use an ensemble model
and stack the individual 1D CNNs together. Moreover,
a series of precalculated physical properties of PPIs are
used as auxiliary features and further incorporated into
our PerSpect stacking models. Our PerSpect ensemble
model is trained and tested on SKEMPI and AB-Bind
datasets, which are the two most widely used datasets for
PPI binding affinity change upon mutation. It has been
found that our model can outperform all existing mod-
els, as far as we know. Our PerSpect ensemble learning
models have great potential in the analysis of PPIs.
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Results
Persistent spectral theory
Molecular structures and interactions can be described
by different topological representations, including graphs,
simplicial complexes and hypergraphs. Persistent spec-
tral models, including persistent spectral graph, persis-
tent spectral simplicial complex and persistent spectral
hypergraph, can be constructed accordingly based on
these different representations [33, 36]. Here, we focus
on PerSpect simplicial complex models. A simplicial
complex, which is a generalization of graphs, is made
up of simplices. Geometrically, a simplex can be a
node (0-simplex), edge (1-simplex), triangle (2-simplex),
tetrahedron (3-simplex) or other n-dimensional coun-
terpart (n-simplex). Topological invariants, in particular,
Betti numbers β, can be evaluated from the simplicial
complex. In general, β0 is the number of connected
components, β1 is the number of circles or loops and
β2 is the number of voids/cavities. For each simplicial
complex, a set of HL matrices (L0, L1, L2 and higher
order Lk) can be constructed. The number (multiplicity)
of zero eigenvalues for k − th dimensional HL matrix
Lk equals to βk. Moreover, non-zero eigenvalues and
their eigenvectors, such as Fiedler value (algebraic
connectivity) and Fiedler vector, can be used for a more
detailed characterization of the ‘geometric’ properties of
the structure.

One of the key concepts for Persistent spectral theory
is the filtration process, during which a series of sim-
plicial complexes (or other topological representations)
at various scales are systematically generated. Based
on these simplicial complexes, a series of HL matrices
can be generated and their spectral information can be
evaluated. PerSpect models focus on the persistence and
variation of eigen spectral information during a filtration
process. More specifically, statistical and combinatorial
properties of the eigen spectrum can be calculated for
each HL matrix, and the change of these attributes during
the filtration is defined as PerSpect attributes, which
includes persistent (zero-) multiplicity, persistent mean,
persistent maximal, etc. Note that persistent (zero-) mul-
tiplicity is exactly the Betti curve [36]. Figure 1 illustrates
simplexes (A), Betti numbers (B), a Vietoris-Rips complex
(C), a filtration process (D) and its corresponding Hodge–
Laplacian matrices (E).

PerSpect for PPI
Characterization of PPI Similar to other biomolecular
interactions, such as those between protein–ligand,
DNA–ligand and protein–DNA, protein interaction regions
or binding domains are usually much smaller than
the size of the protein complex. For two proteins
P1 and P2, and their protein–protein complex P1,2 = P1 ∪
P2, we define their interaction domains as
follows:

(1) PB
1 : atoms from the binding site of P1

(2) PB
2 : atoms from the binding site of P2

In this way, PPIs at the molecular level can be char-
acterized by the various interactions between atoms of
these two regions. More specifically, there are two general
types of interactions, i.e. atom interactions between and
within two regions. Two types of simplicial complexes are
employed accordingly to model them.

We denote an atom coordinate as r, and the two
binding domains as PB

1 = {r1, r2, ..., rNP1
} and PB

2 =
{r1, r2, ..., rNP2

}, respectively. To describe the atom inter-
actions between two protein regions, we consider an
interactive distance matrix with size (NP1 +NP2)×(NP1 +
NP2) as follows:

IB(mi, mj) =
{

‖ri − rj‖, ri ∈ PB
1 , rj ∈ PB

2 or ri ∈ PB
2 , rj ∈ PB

1
∞, otherwise.

, (1)

where ‖ri − rj‖ is the Euclidean distance, and mi and mj

are the indexes of atom ri and ligand atom rj, respec-
tively. Based on the interactive distance matrix, Vietoris–
Rips complexes are constructed and atom interactions
between two regions are encoded into PerSpect features.

Further, to characterize the atom interactions within
binding regions, we consider three atom sets, including
PB

1 , PB
2 and PB

1,2 = PB
1 ∪ PB

2 . For each atom set, its Alpha
complexes are systematically constructed based on the
filtration of atom radius. From these Alpha complexes,
HL matrixes can be generated and their PerSpect features
are used as features.

As an important step in effective characterization
for PPIs, element-specific combinations [6–8, 47, 48] are
employed in our model. Essentially, a protein structure
can be decomposed into a series of atom sets, including
carbon (C), nitrogen (N) and oxygen (O). The topological
features from the combination of these atom sets can
be used in the characterization of different types of
interactions between and within proteins. In our model,
both interactive element-specific combinations and
general element-specific combinations are considered.
For interactive element-specific models, a total of
nine combinations {C–C, C–N, C–O, N–C, N–N, N–O, O–
C, O–N, O–O} between PB

1 and PB
2 in both wild and

mutant types are considered. Vietoris–Rips complexes
are generated based on them. Further, a total of seven
general element-specific combinations, including {{C},
{N}, {O}, {C,N}, {C,O}, {N,O}, {C,N,O}}, are considered, and
alpha complexes are generated based on them. PerSpect
features from the corresponding HL matrixes are used as
molecular descriptors.
Characterization of PPI on mutation The study of the PPI
binding affinity upon mutation is of great importance,
especially for the understanding of the mutation effects
of SARS-CoV-2. Normally, mutations happens at one or
several mutation sites. Here, we focus on the single muta-
tion situation. Let the mutation site of a protein–protein
complex P1,2 to be PMS

1 , and its neighboring atoms to be
PMN

1 . More specifically, we have

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/2/bbac024/6533501 by ShanghaiTech U

niversity user on 08 January 2023



4 | Wee and Xia

Figure 1. Illustration of fundamental concepts in PerSpect. A Examples of k-simplices as a point (0-simplex), an edge (1-simplex), a triangle (2-simplex)
and a tetrahedron (3-simplex) geometrically. B Geometric meanings of Betti numbers. β0 is the number of connected components, β1 is the number
of circles or loops, and β2 is the number of voids or cavities. C Illustration of a Vietoris–Rips complex. Let all the vertices associate with pre-defined
same-sized spheres. A k-simplex is formed if any two spheres are overlapped with each other. D A filtration process for PDBID: 3BN9. We consider the
mutation site with mutation ID: HQ100aV. The atoms in red are from wild-type residue tyrosine, while the cyan atoms are within 3Å from tyrosine. E The
generated combinatorial HLs for D. Only the combinatorial HLs L0 and L1 are illustrated. L0 starts off as a zero matrix (isolated point cloud) and gradually
transforms into a matrix with all non-diagonal entries -1, representing a complete graph. For L1, the matrix starts to appear when 1-simplex starts to
form in filtration process. The number of non-diagonal non-zero entries in L1 increases in initial stages of filtration process but slowly converging to
zero toward the end, resulting in a diagonal matrix.

(1) PMS
1 : atoms of the mutation site

(2) PMN
1 : neighboring atoms within 12Å from the muta-

tion site (PMS
1 )

To characterize the atom interactions between the
mutation site and its neighboring atoms, we can define
an interactive matrix IM(mi, mj), similar to Eq. (1), as
follows:

IM(mi, mj) =

⎧⎪⎪⎨
⎪⎪⎩

‖ri − rj‖, if ri ∈ PMS
1 , rj ∈ PMN

1

or ri ∈ PMN
1 , rj ∈ PMS

1 .

∞, otherwise.

(2)

Here, ‖ri − rj‖ is the Euclidean distance, and mi and mj are
the indexes of atom ri and atom rj, respectively. Similar
to the characterization of PPIs, both interactive and

general element-specific combinations are considered,
and the corresponding Vietoris–Rips and Alpha com-
plexes are generated. Molecular descriptors can be
obtained from the corresponding HL matrices. More
details can be found in Materials and Methods.

Figure 2 A shows the zero-eigenvalue persistent
multiplicities of L0 and L1 before and after mutation.
A clear topological variation is observed in the mutation
structures. Note that persistent multiplicities (of zero
eigenvalues) correspond to Betti curves. Other persistent
attributes from the non-zero eigenvalues would reveal
more detailed ‘geometric’ information of the structures.
Figure 2 B shows the persistent mean, minimum, max-
imum and standard deviation (of all non-zero eigenval-
ues) in L0 and L1 between wild and mutant structures. In
general, these persistent attributes change with respect
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Figure 2. Illustration of persistent attributes in wild type and mutation type of protein 3BN9. The residue tyrosine in wild type is mutated into valine
residue (HQ100aV). A The zero-eigenvalue persistent multiplicities between two types. They are generated by using all atoms within 5Å within the
mutation site. B Illustration of persistent maximum, minimum, mean and standard deviation generated from L0 and L1.

to filtration values. Different patterns can also be clearly
observed between the wild and mutant type.

PerSpect ensemble learning for PPIs binding
affinity changes prediction
We apply an ensemble learning model which stacks three
different types of base learner models together, as shown

in Figure 3. The first type of base learners are 11 persis-
tent attributes from L0 (Rips complex) with 1D CNN mod-
els, which are denoted as A.1 to A.11. The second type
of base learner models are PerSpect features from Alpha
complexes with 1D CNN models, which are denoted as
B.1 and B.2. The third type of base learner are auxiliary
features with gradient boosting tree (GBT) model, which
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Figure 3. Illustration of the three PerSpect-EL models. The three types of base learners are based on PerSpect features from Rips complex, PerSpect
features from Alpha complex and auxiliary features. The first two types of base learners use 1D CNN models, while the third type uses GBT. Their
individual output predictions are stacked together as input into Meta Learners for a final prediction. Meta Learner 1 (PerSpect-EL (M1)) uses 11 base
learners from Rips complexes. Meta Learner 2 (PerSpect-EL (M2)) uses 12 base learners from both Rips complexes and Alpha complexes. Meta Learner
3 (PerSpect-EL (M3)) uses all 14 base learners.

is denoted as C.1. These auxiliary features are the same
as those in TopNetTree [63]. The details can be found in
Materials and Methods.

In our PerSpect-EL model, we stack all the above
three types of base learner models together and denote
the model as PerSpect-EL(M3). We have also studied
another two ensemble learning models PerSpect-EL (M1)
and PerSpect-EL (M2). The PerSpect-EL (M1) includes
only the first type of base learners, while PerSpect-
EL (M2) contains in it the first two types of base
learners, i.e. excluding auxiliary feature based GBT
model. Computationally, all 13 base learner with 1D CNN
models have been optimized with the same architecture
and hyperparameters. The detailed architecture the 1D
CNN model can be found in Materials and Methods.

To validate the performance of our models, we con-
sider the two most commonly used datasets, namely,
SKEMPI-1131 and AB-Bind [55, 63].

Performance on SKEMPI-1131 The SKEMPI dataset
contains 3047 protein–protein heterodimeric complexes
with experimentally determined structures recorded
with binding affinity changes due to mutations. The
structures are collected from various scientific litera-
ture and consist of both single-point and multi-point
mutations. From a total of 2317 single point mutations,
a subset of 1131 non-redundant interface structures are
selected. This 1131 structures are known as the SKEMPI-
1131 dataset, which has been commonly used as the
benchmark for various prediction models, including
TopNetTree, BindProfX, Profile-score, FoldX, SAAMBE,
BeAtMuSic and Dcomplex. We test our PerSpect-EL
models using a similar 10-fold cross-validation as in
previous models. Figure 4 demonstrates the performance

Table 1. Comparison of PerSpect-EL models with existing state-
of-the-art models on SKEMPI-1131 dataset. The PerSpect-EL mod-
els include PerSpect-EL (M1) with PCC 0.804±0.004 and RMSE
1.454±0.0138 kcal/mol, PerSpect-EL (M2) with PCC 0.813±0.003
and RMSE 1.430±0.0966 kcal/mol and PerSpect-EL (M3) with PCC
0.853±0.002 and RMSE 1.303±0.00726 kcal/mol

Models PCC

PerSpect-EL (M3) 0.853
TopNetTree 0.850
PerSpect-EL (M2) 0.813
PerSpect-EL (M1) 0.804
BindProfX 0.738
Profile-score + FoldX 0.738
Profile-score 0.675
SAAMBE 0.624
FoldX 0.457
BeAtMuSic 0.272
Dcomplex 0.056

of our PerSpect-EL models and Table 1 lists the results
for all the state-of-the-art models. It can be seen that
our PerSpect-EL (M3) model has a PCC of 0.853, which
is better than all existing models, as far as we know.
For PerSpect-EL (M1) and PerSpect-EL (M2) models, they
have better performance than nearly all the existing
model, except TopNetTree, which also uses advanced
mathematical invariants as their molecular features.
Figure 4 C illustrates the detailed predictions of PerSpect-
EL (M3) by mutated residue types. Our PerSpect-EL (M3)
model can achieve great accuracy in all the predictions.

Further, a detailed comparison, between PerSpect-
EL (M3) predictions and experiments, for the average
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Figure 4. Illustration of PerSpect-EL model performance with SKEMPI-1131 data. A Comparison between the experimental binding affinity changes
(kcal/mol) with predicted binding affinity changes (kcal/mol) from PerSpect-EL (M3) model; B Comparison of PerSpect-EL models with existing state-of-
the-art prediction models; C Breakdown of predicted binding affinity changes (kcal/mol) by mutation types and by alanine/non-alanine mutations.

and variance of ��G in each type of residue-to-residue
mutation is presented in Figure S1. More specifically,
Figure S1 A shows the comparison of the average of ��G
between our predictions and experimental results. Note
that a reverse mutation will result in a negative ��G. In
the residue-to-residue mutation matrix for average ��G,
the upper triangle region and lower triangle region have
exactly the same absolute values but with the opposite
sign. A highly consistent pattern between the two
residue-to-residue mutation matrices can be observed,
indicating that our predictions are extremely accurate.
Figure S1 B shows the comparison of the variance of
��G. Similarly, the values in the two matrices are highly
consistent with each other. Further, we can find some
interesting results in the mutation matrices. For instance,
all the mutations from the other types of residues to
alanine (A) result in a positive binding affinity change.
This may due to the reason that the alanine is a small-
sized residue, thus it has a relatively higher stability than
the other large-sized residues. We can also observe that
mutations from the other types of residues to tyrosine
(Y) or leucine (L) are associated with negative binding
affinity change, mainly due to higher instabilities of the
two residue types. Moreover, negative binding affinity
changes occur in mutations from charged residues to
uncharged polar residues (e.g. D to T), mainly due to the
influence of the interactions between charged residues.

Performance on AB-Bind S645 The AB-Bind dataset
consists of 1101 mutation data entries [55]. Only 645
mutation points across 29 antibody-antigen complexes
are single-point mutations. This single-point mutation

subset is known as AB-Bind S645, which consists of 20%
stabilizing mutations and 80% non-stabilizing ones. A
total of 87 of the 645 single-point mutations are homol-
ogy structures, while 27 single-point mutations result
in the non-binding situations. For these 27 non-binders,
their binding affinity changes are set to be a constant
value 8 kcal/mol, and they are considered as outliers
in the dataset. It has been found that these outliers can
severely worsen the performance of learning models [63].

It has been found that our PerSpect-EL (M3) model
can achieve an average PCC of 0.59 for the 10-fold cross-
validation on AB-Bind S645 dataset, including the non-
binders. As demonstrated in Table 2, our results are bet-
ter than all existing models except TopNetTree [63]. How-
ever, the same test without non-binders shows that our
model can achieve a better performance than all existing
models, with an average PCC of 0.70. A similar blind test
on 87 homology structures shows that our model can
deliver an average PCC of 0.63 with RMSE 1.144 kcal/mol,
which is the best results as far as we know. Figure S2
shows the performance of PerSpect-EL (M3) on AB-Bind
S645 data. The predictions are grouped by mutation types
in Figure S2 D and by mutation regions in Figure S2 E.

Discussion
Data representations and featurizations are of essential
importance to all learning models. Advanced mathe-
matical tools, which characterize molecular intrinsic
structural and physical properties, have demonstrated
great potential to significantly improve the efficiency of
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Table 2. Comparison of PerSpect-EL models with existing state-
of-the-art models on AB-Bind S645 dataset. The PerSpect-EL mod-
els include PerSpect-EL (M3) with PCC 0.59±0.0242 and RMSE
1.593±0.0341 kcal/mol, PerSpect-EL (M2) with PCC 0.59±0.0246
and RMSE 1.593±0.0353 kcal/mol and PerSpect-EL (M1) with PCC
0.57±0.0246 and RMSE 1.642±0.0376 kcal/mol

Models Average PCC

with non-binders w/o non-binders

TopNetTree 0.65 0.68
PerSpect-EL (M3) 0.59 0.70
PerSpect-EL (M2) 0.59 0.70
PerSpect-EL (M1) 0.57 0.66
TopGBT 0.56 –
mCSM-AB 0.53 0.56
TopCNN 0.53 –
Discovery Studio 0.45 –
mCSM-PPI 0.35 -
FoldX 0.34 –
STATIUM 0.32 –
DFIRE 0.31 –
bASA 0.22 –
dDFIRE 0.19 –
Rosetta 0.16 –

machine learning models for molecular data analysis. In
our PerSpect-EL models, Hodge Laplacian based spectral
information is used for PPI representation and featur-
ization for the first time. A multiscale representation is
achieved in our model through a sequence of HL matrices
at various different scales in a specially designed
filtration process. Molecular structural and interactional
features are generated from PerSpect attributes, which
are statistical and combinatorial properties of spectrum
information from these HL matrices. Each PerSpect
attribute is input into a 1D CNN, and these CNN networks
are stacked together in our PerSpect-based ensemble
learning models. To the best of our knowledge, this is
the first time Hodge theory has been used in ensemble
learning models for PPI binding affinity upon mutations.

Methods
Topological Representations
Graph Graph or network models have been applicable to
various material, chemical and biological structures and
systems. Atoms and bonds are commonly interpreted
as vertices and edges in such models. Mathematically, a
graph representation can be defined as G(V, E), where V =
{vi; i = 1, 2, · · · , N} is the vertex set with size N. The edges
in G forms another set E = {eij = (vi, vj); 1 ≤ i < j ≤ N}.
Note that graph invariants contain graph properties that
does not change under graph isomorphisms (bijective
mapping between two graphs). Some common graph
invariants are graph order, size, clique number (clique
is maximal set of nodes that is complete) and chromatic
index.

Simplicial complex A simplicial complex is the extension
of graph networks by including its higher dimen-
sional counterparts such as triangles and tetrahedrons.

An n-dimensional simplicial complex contains up to
n-dimensional simplices. Every simplex has a finite
set of vertices and can be viewed geometrically as a
point (0-simplex), an edge (1-simplex), a triangle (2-
simplex), a tetrahedron (3-simplex) and in general, as
a k-dimensional counterpart (k-simplex). More precisely,
a k-simplex σ k = {v0, v1, v2, · · · , vk} is defined as a convex
hull formed by its k + 1 affinely independent points
v0, v1, v2, · · · , vk as follows:

σ k =
{
λ0v0 + λ1v1 + · · · + λkvk

∣∣∣∣
k∑

i=0

λi = 0; ∀i, 0 ≤ λi ≤ 1
}

.

The ith dimensional face of k-dimensional simplex σ k

(i < k) is the convex hull formed by i+1 vertices from the
set of k + 1 points v0, v1, v2, · · · , vk. The simplices are the
basic components for a simplicial complex.

A simplicial complex K has a finite set of simplices
that satisfy two conditions. First, any face of a simplex
from K is also in K. Second, the intersection of any two
simplices in K is either empty or a shared face. A kth chain
group Ck is an abelian group of oriented k-simplices σ k,
which are simplices together with an orientation, i.e. an
ordered vertex set. The boundary set ∂k : Ck → Ck−1 for
an oriented k-simplex σ k can be denoted as

∂kσ
k =

k∑
i=0

(−1)i[v0, v1, v2, · · · , v̂i, · · · , vk].

Here, [v0, v1, v2, · · · , v̂i, · · · , vk] is an oriented (k − 1)-
simplex that is generated from σ k with vi removed.
The boundary operator maps every simplex to its faces
and satisfies the equation ∂k−1∂k = 0. There are many
common types of simplicial complexes such as Vietoris–
Rips complex, Čech complex, Alpha complex and clique
complex. Figure 5 illustrates the graph and simplicial
complex (Vietoris–Rips) for Protein PDBID:1PGB.

For simplicity of notations, we denote σ k−1
j ⊂ σ k

i to

represent that σ k−1
j is a face of σ k

i and denote σ k−1
j ∼

σ k
i if they have the same orientation, i.e. similarly ori-

ented. Furthermore, we say that two k-simplices σ k
i and

σ k
j are upper adjacent (resp. lower adjacent) neighbors,

denoted as σ k
i �σ k

j (resp. σ k
i � σ k

j ), if they are both faces
of a common (k + 1)-simplex (resp. they both share a
common (k − 1)-simplex as their face). In addition, if
the orientations of their common lower simplex are the
same, it is called similar common lower simplex (σ k

i � σ k
j

and σ k
i ∼ σ k

j ). On the other hand, if the orientations are
different, it is called dissimilar common lower simplex
(σ k

i � σ k
j and σ k

i � σ k
j ). The (upper) degree of a k-simplex

σ k
i , denoted as d(σ k

i ), is the number of (k+1)-simplices, of
which σ k

i is a face.
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Figure 5. Illustration of graph and simplicial complex based topological representations for protein PDBID:1PGB. Note that only Cα atoms are used in
graph and simplicial complex construction.

Spectral theories
The characterization, identification, comparison and
analysis of structure data, from material, chemical
and biological systems, are usually highly complicated
due to the high dimensionality and complexity it con-
tains. Spectral graph theory provides reduction in data
dimensionality and complexity by generating compact
spectral information using connectivity matrices, which
originates from the structural data. These connectivity
matrices consists of incidence matrix, adjacency matrix,
(normalized) Laplacian matrix and Hessian matrix.
Spectral information includes eigenvalues, eigenvectors,
eigenfunctions and other related properties, such as
Cheeger constant, edge expansion, vertex expansion,
graph flow, graph random walk and heat kernel of
graph. Spectral graph theory has been consistently
generalized for spectral simplicial complexes where
higher order connectivity matrices can be considered
[1, 14, 23, 53].

Spectral Graph In spectral graph theory, a graph G(V, E)

can be easily represented via both an adjacency matrix
and Laplacian matrix [11, 39, 56, 60]. The adjacency
matrix A contains the connectivity information between
any two vertices via the following:

A(i, j) =
{

1, (vi, vj) ∈ E

0, (vi, vj) /∈ E.

The degree of a vertex vi is the total number of edges
that are connected to vertex vi, i.e. d(vi) = ∑N

i �=j A(i, j). The
vertex diagonal matrix D can be subsequently defined as

D(i, j) =
{∑N

i �=j A(i, j), i = j

0, i �= j.

Laplacian matrix, also known as the admittance matrix
and Kirchoff matrix, is defined as L = D − A. More

specifically, it can be written as

L(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

d(vi), i = j

−1, i �= j and (vi, vj) ∈ E.

0, i �= j and (vi, vj) /∈ E.

The Laplacian matrix has many fundamental proper-
ties. It is always positive semidefinite, which implies
that all its eigenvalues are always non-negative. In fact,
the number of zero eigenvalues i.e. its multiplicity, is
equivalent to its topological invariant β0, which counts
the number of connected components in the graph. The
second smallest eigenvalue, also known as the Fieldler
value of the Laplacian matrix of the graph, describes the
connectivity information of the graph. Note that Fiedler
value is non-zero if and only if the graph is connected.
Furthermore, the Fiedler eigenvector can decompose the
graph into two well-connected subgraphs. As such, the
Fiedler eigenvector and other eigenvectors corresponding
to non-zero eigenvalues can also be used as features
in spectral clustering. The eigenvalues and eigenvectors
also forms the eigenspectrum and the study of spectral
graph theory is based on the underlying properties of
eigenspectrum.

There are two types of normalized Laplacian matrices,
including the symmetric normalized Laplacian matrix,
which is defined as Lsym = D−1/2LD−1/2, and the random
walk normalized Laplacian is defined as Lrw = D−1L.

Spectral simplicial complex The spectral simplicial com-
plex theory is then extended to the studying of the spec-
tral properties of HL matrices, which are constructed
based on a simplicial complex instead of a graph [1, 14,
23, 42, 53]. For an oriented simplicial complex, its kth
boundary matrix Bk can be defined as follows:

Bk(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1, if σ k−1
i ⊂ σ k

j and σ k−1
i ∼ σ k

j

−1, if σ k−1
i ⊂ σ k

j and σ k−1
i � σ k

j

0, if σ k−1
i �⊂ σ k

j .
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These boundary matrices satisfy the condition that
BkBk+1 = 0. The kth HL matrix can then be written as

Lk =
{

B1BT
1, if k = 0

BT
kBk + Bk+1BT

k+1, if k ≥ 1.

Furthermore, if the highest order of the simplicial com-
plex K is n, then the nth HL matrix is Ln = BT

nBn. The above
HL matrices can be explicitly described in terms of the
simplex relations. More precisely, L0 can be described as

L0(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

d(σ 0
i ), if i = j

−1, if i �= j and σ 0
i � σ 0

j

0, if i �= j and σ 0
i /� σ 0

j ,

which is equivalent to the graph Laplacian. Furthermore,
when k > 0, Lk can be expressed as

Lk(i, j)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(σ k
i ) + k + 1, if i = j

1, if i �= j, σ k
i /� σ k

j , σ k
i � σ k

j and σ k
i ∼ σ k

j

−1, if i �= j, σ k
i /� σ k

j , σ k
i � σ k

j and σ k
i �∼ σ k

j

0, if i �= j, σ k
i � σ k

j , σ k
i �� σ k

j .

The eigenvalues of combinatorial Laplacian matrices are
independent of the choice of the orientation [23]. Further-
more, the multiplicity of zero eigenvalues, i.e. the total
number of zero eigenvalues, of Lk corresponds to the kth
Betti number βk.

One can denote the kth lower HL matrix as L↓
k = BT

kBk

and the upper HL matrix as L↑
k = Bk+1BT

k+1. These matri-
ces have also been found to contain several interesting
spectral properties [1]. First, the eigenvectors associated
with non-zero eigenvalues of L↑

k are orthogonal to the
eigenvectors from the non-zero eigenvalues of L↓

k . Next,
the non-zero eigenvalues of Lk are either the eigenval-
ues of L↓

k or those of L↑
k . Consequently, the eigenvectors

associated with non-zero eigenvalues of Lk are either the
eigenvectors of L↓

k or those of L↑
k .

We consider an oriented simplicial complex K1 as in
Figure 6. Its boundary operators are

Here, the vertex vi is denoted as [i], 1-simplex [vi, vj]
is denoted as [i, j] and 2-simplex [vi, vj, vk] is denoted as
[i, j, k]. The corresponding HL matrices are as follows:

and

Figure 6. Illustration of the oriented simplex complex K1.

Note that mathematically Lk represents the topologi-
cal connections in terms of upper and lower adjacency
between k-simplexes.

PerSpect Theory
Filtration A multiscale representation is naturally gener-
ated via a filtration process [15]. The filtration parameter,
denoted as f and key to the filtration process, is usu-
ally chosen as sphere diameter for a point cloud data,
edge weights from graphs and isovalues in density-based
data. Systematic increase (or decrease) of f will naturally
induce a sequence of hierarchical topological representa-
tions, which can be in the form of simplicial complexes
or graphs. The filtration parameter acting on a distance
matrix, i.e. a matrix with entries of distance between any
two vertices, can be defined with a cutoff value which
corresponds to the filtration parameter in filtration pro-
cess. Essentially, a 1-simplex (or edge) is formed when-
ever the distance between two vertices are within the fil-
tration parameter. Hence, a gradual consistent increase
(or decrease) in filtration parameter generates a series
of nested simplicial complexes, with the simplicial com-
plex produced at a smaller filtration parameter being a
subset of simplices of the simplicial complex at a larger
filtration parameter. With the various definitions and
constructions of complexes such as Vietoris–Rips com-
plex, Cech complex, alpha complex, cubical complex,
Morse complex and clique complex, a variety of nested
simplicial complexes can be constructed.

Persistent Attributes With the generation of eigenvalues
from the HL matrices in a filtration process, a collection
of 11 persistent attributes is computed to summarize the
statistical and combinatorial properties of the eigenval-
ues in our feature vector. As the number of persistent
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Table 3. The detailed information for the Vietoris–Rips complex based L0 feature generation. Here, PB
1 and PB

2 are the binding site atoms
of P1 and P2, respectively, PMS

1 are atoms from the mutation site (note that we assume the mutation site is on P1) and PMN
1 are the

neighboring atoms (within 12Å) of the mutation site. Further, IB is the interactive distance matrix in Eq. (1), which is constructed based on
PB

1 and PB
2 . IM is the interactive distance matrix in Eq. (2), which is constructed based on PMS

1 and PMN
1 . Moreover, all interactive distance

matrices are generated based on the element-specific atom-sets, including carbon(C), nitrogen(N) and oxygen(O). Only 0-dimensional
HL matrices are generated for both wild and mutant type

Type Interaction Distance Complex Dimensions

Wild and mutant PB
1 PB

2 IB Vietoris–Rips L0

Wild and mutant PMS
1 PMN

1 IM Vietoris–Rips L0

attributes considered for every HL is the same, we then
obtain a long feature vector of equal size which can act
as our molecular descriptor or fingerprints.

Other than the persistent multiplicity of zero-
eigenvalues, we consider a set of persistent attributes
for the non-zero eigenvalues. For a set of non-zero
eigenvalues {λ1, λ2, · · · , λn}, we can define the energy of a
simplicial complex as the zeta function

ζ(s) =
n∑

i=1

1
λs

i

=
n∑

i=1

e−s log λi , s ∈ C.

The zeta function, which is also introduced in [28], is
interesting for particular values of s as it represents
specific molecular descriptors. For instance, ζ(−m) =∑n

i=1 λm
i , m ∈ Z, refers to the m-th spectral moments of HL

matrices. In particular, ζ(−1) also refers to the Laplacian
graph energy. In total, we consider the following per-
sistent attributes/statistics for the featurization of each
given set of eigenvalues {λ1, λ2, · · · , λn}:

• Multiplicity of zero-eigenvalue
• min{λ1, λ2, · · · , λn}, also known as the Fiedler value.
• max{λ1, λ2, · · · , λn}
• λ̄ = 1

n

∑n
i=1 λi = 1

n ζ(−1).
• Standard Deviation
• Laplacian Graph Energy ζ(−1).

• Generalized Mean Graph Energy
∑n

i=1
|λi−λ̄|

n .
• Spectral second Moment ζ(−2).
• ζ(2) = ∑n

i=1
1
λ2
i

.

• Quasi-Wiener Index (n + 1)ζ(1).
• Spanning Tree Number log[ 1

n+1 · ∏n
i=1 λi].

PPIs binding affinity changes prediction with
PerSpect-EL
PerSpect-based PPI characterization The AB-Bind S645 PDB
files can be downloaded from the TopNetTree data.
The SKEMPI-1131 PDB files can be downloaded from
SKEMPI database (https://life.bsc.es/pid/skempi2/). The
‘scap’ utility inside the Jackal software [67] is used to
generate all the mutated structures needed in AB-Bind
S645 and SKEMPI-1131 datasets. For a given backbone
in the structure, the scap utility predicts the side-chain
conformations and the profix utility fixes any missing
atoms and residues in the raw pdb files.

In our PerSpect models, we consider molecular
features from two types of simplicial complexes, i.e.
Vietoris–Rips complex and Alpha complex. As illustrated
in Figure 3, the L0 features are generated from Vietoris–
Rips complex, and L1 and L2 features are generated from
Alpha complex. The detailed information for Vietoris–
Rips based L0 feature generation is listed in Table 3. We
use interactive distance matrices IB in Eq. (1) and IM in
Eq. (2) to generate a series of Vietoris–Rips complex. Note
that all interactive distance matrices are based on three
types of element-specific atom-sets, including carbon(C),
nitrogen(N) and oxygen(O). Only L0 features are gener-
ated for both wild and mutant type. Computationally,
Laplacian matrices L0 are generated with a step size
of 0.25 Å. A summary of 48 HL matrices are generated
from each filtration process (with a filtration size 12 Å).
The total feature size (for Vietoris–Rips based features)
is 19 008 = 11(attributes)×48(stepsize)×9(atom-atom
combinations)×2(wild and mutant types)×2(mutation
and binding sites).

The detailed information for Alpha-complex based L1

and L2 feature generation is listed in Table 4. Different
from interactive distance matrix based Vietoris–Rips
complex, Alpha complexes are directly generated from
six different types of atom sets, including PB

1 , PB
2 , PB

1 ∪PB
2 ,

PMS
1 , PMN

1 and PMS
1 ∪ PMN

1 . Note that seven element-
specific models are considered, including {{C}, {N}, {O},
{C,N}, {C,O}, {N,O}, {C,N,O}}. Computationally, a filtration
process from 1.0 to 9.0Å is considered and a total of
160 HL matrices are generated (for L1 and L2). Only
the persistent multiplicities of L1 and L2 are used and
the total size of Alpha-complex based features is 13
440=160(stepsize)×7(element-specific models)×6(atom
sets)×2(wild and mutant types).

PerSpect-EL models In our PerSpect-EL models, the base
learners use both GBT and 1D CNN models. The detailed
hyperparameters for GBT is demonstrated in Table 5.
The general architecture for 1D CNN models are demon-
strated in Figure 7. The CNN hyperparameters are as
follows:

• Parametric ReLU on all four convolutional layers.
• Dropout(0.1)
• First layer weight initialized by he_normal.
• Rest of weights initialized by lecun_uniform
• Batch size = 8, 2000 epochs.
• Adam Optimizer with lr=1e-4.
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Table 4. The detailed information for the Alpha-complex based L1 and L2 feature generation. Here, PB
1 and PB

2 are the binding site atoms
of P1 and P2 respectively, PMS

1 are atoms from the mutation site and PMN
1 are the neighboring atoms (within 12Å) of the mutation site.

Alpha complexes are constructed based on these different types of atom sets. Moreover, element-specific models, including {{C}, {N},
{O}, {C,N}, {C,O}, {N,O}, {C,N,O}}, are considered. Both L1 and L2 are generated for wild- and mutant-type complexes

Type Point Cloud Distance Complex Dimensions

Wild and mutant PB
1 Euclidean Alpha L1/L2

Wild and mutant PB
2 Euclidean Alpha L1/L2

Wild and mutant PB
1 ∪ PB

2 Euclidean Alpha L1/L2

Wild and mutant PMS
1 Euclidean Alpha L1/L2

Wild and mutant PMN
1 Euclidean Alpha L1/L2

Wild and mutant PMS
1 ∪ PMN

1 Euclidean Alpha L1/L2

Table 5. Hyperparameter settings for the GBT. These hyperparameters are used in Base Learner C.1 and all Meta Learners

No. of estimators Max depth Minimum sample split Learning rate

4000 7 2 0.01
Loss function Max features Subsample size Repetition
least square square root 0.7 10 times

Figure 7. Details of CNN architectures for Base Learner A and Base Learner B in Figure 3. Each persistent attribute generates an individual Base Learner.
Two different types of CNN architectures are considered, one for L0 based features and the other for L1 and L2 based features.

Further, auxiliary features, which contain chemical
and physical descriptors, are also considered in our
PerSpect-EL (M3) models. The auxiliary features act
as input features for a GBT base learner model. The
prediction outputs from this base learner model are then
stacked with the outputs from base learner CNN models,
serving as inputs for the meta-learner. The auxiliary
features have feature size of 707, which contains mostly
atom-level and residue-level features [63]. A more
detailed discussion of the auxiliary features can be found
in the Supplementary information.

Key Points

Our main contributions in this paper are as follows:

• We develop persistent spectral (PerSpect) based protein–
protein interaction (PPI) representation and featuriza-
tion.

• We propose PerSpect-based ensemble learning
(PerSpect-EL) models for PPI binding affinity prediction
for the first time.

• We test our model on the two most commonly used
datasets, i.e. SKEMPI and AB-Bind. It has been found that
our model can achieve state-of-the-art results and out-
perform all existing models to the best of our knowledge.

• Our model demonstrates great potential in the analysis
of mutation effects in PPI binding affinity.

Code and Data Availability
The PerSpect-EL models can be found in https://
github.com/ExpectozJJ/PerSpect-Ensemble-Learning.
The dataset SKEMPI-1131 can be found in https://life.
bsc.es/pid/skempi2 and the dataset AB-Bind S645 can
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be found in https://github.com/ExpectozJJ/PerSpect-
Ensemble-Learning/tree/main/AB-BindS645.
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