

PyMOL简介及相关操作

报告人:丁洁女 组员:廖杨洁、杨承峰、段博、谭菲 组号:G13 2013-1-18

- 一、PyMOL简介
- PyMOL概述
- PyMOL的特点
- PyMOL的界面介绍
- 二、PyMOL功能
- 三、PyMOL的基本操作
- 鼠标操作
- 命令操作

四、PyMOL应用实例

A PyMOL-generated image on the cover of Nature

Example

PyMOL概述

- PyMOL是一个开放源码,由使用者赞助的分子三维结构显示软件。 由Warren Lyford DeLano编写,并且由DeLano Scientific LLC将它商 业化。
- Pymol名字的来源: "Py"表示该软件基于python这个计算机语言, "Mol"则是英文分子(molecule)的缩写,表示该软件用来显示 分子结构。
- PyMOL适用于创作高品质的小分子或是生物大分子(特别是蛋白质)的三维结构图像。软件的作者宣称,在所有正式发表的科学文献中的蛋白质结构图像中,有四分之一是使用PyMOL来制作。
- 网站: http://www.pymol.org/

PyMOL的特点

≻优点

- 强大的分子可视化软件
- 高质量科学论文发表图形
- 动画制作
- 文档文件和会话文件并存
- 鼠标操作与命令行操作
- 免费的开放源码

≻缺点

- 缺乏足够的文件资料
- 没有UNDO功能
- 功能不完善

PyMOL的界面介绍

- PyMOL的使用界面:包括一个图形显示窗口和 一个GUI窗口。
- GUI是图形用户界面 (Graphical User Interface)的缩写,由 菜单、按钮、正文框和 其他小工具构成。
- Viewer是PyMOL系统的 心脏。这是一个开放式 图形语言(OpenGL)窗 口,所有的3D图形在此 展示,并且用户可直接 操纵这些图形。

The Viewer Window

PyMol可以同时打开多个PDB文件,或将某个PDB文件拆分成多个独立单元。每个PDB或独立单元可以通过"A"中的"rename selection"重新命名后显示在Names Panel上。

ASHLC menu

Action Show

Actions:
zoom
orient
center
origin
drag
preset
find
align
generate
assign sec. struc.
assign sec. struc. rename object
assign sec. struc. rename object duplicate object
assign sec. struc. rename object duplicate object delete object
assign sec. struc. rename object duplicate object delete object hydrogens
assign sec. struc. rename object duplicate object delete object hydrogens remove waters
assign sec. struc. rename object duplicate object delete object hydrogens remove waters state
assign sec. struc. rename object duplicate object delete object hydrogens remove waters state masking
assign sec. struc. rename object duplicate object delete object hydrogens remove waters state masking sequence
assign sec. struc. rename object duplicate object delete object hydrogens remove waters state masking sequence movement

compute

As: li st ri cai la ce nor dot sp nb, mes sur

	Show:
ies	as
cks	lines
bon	sticks
toon	ribbon
el	cartoon
1	label
bonded	cell
s	nonbonded
ieres	dots
spheres	spheres
h	nb_spheres
face	mesh
	surface
	organic
	main chair
	side chair
	disulfides

Hide:
everything
lines
sticks
ribbon
cartoon
label
cell
nonbonded
dots
spheres
nb_spheres
mesh
surface
main chain
side chain
waters
hydrogens
unselected

Hide Label

Label:
clear
residues
chains
segments
atom name
element symbol
residue name
residue identifier
chain identifier
segment identifier
b-factor
occupancy
vdw radius
other properties
atom identifiers

Color

Atoms	Color:
HNOS	by element
CHNOS	by chain
CHNOS	by ss
CHNOS	spectrum
CHNOS	auto
CHNOS	rede
CHNOS	r cus I greens
CHNOS	hlues
CHNOS	uellows
set 2	gerrows
set 3	ouapo
set 4	cgans
set 5	tipto
	annes
	grays

The External GUI Window

✓ Standard menu bar

76 PyMOL Tcl/Tk GUI						- 0	x
<u>File E</u> dit <u>B</u> uild <u>M</u> ovie <u>D</u> isplay <u>S</u> etting S <u>c</u> ene M <u>o</u> use <u>W</u> izard <u>P</u> lugin						<u>H</u> elp	<u>T</u> utorial
		Reset	Zoom	Drav	N	Ray	Rock
You clicked /1M98//B/LEU`16/CA		Unpick	1	Deselect	t	Ge	t View
Selector: selection "sele" defined with 8 atoms. You clicked /1M98//B/ALA`220/CA		< <	Stop	Play	>	>	MClear
Selector: selection "sele" defined with 13 atoms.			mmand			Builde	er
Selector: selection "sele" defined with 21 atoms.		File Input					
PyMOL>bg_color black	-			<i>r</i>			
	_			/			
	-		-				
Command input field Output region			Bu	tto	ns	5	

• 与Viewer window相比的优势:能通过Ctrl-X, Ctrl-C, and Ctrl-V使用剪切、复制、黏贴功能

PyMOL功能

☞比对功能

- ✔ 基于蛋白序列
- Action -> align
- Pymol> align (2xuv and n. CA), (hdea and n. CA)
- ✔ 基于原子对
- Wizard-> Pair Fiting

76 81 TDLTQIP MLY VIE		all 2XUV		A A	S S	H H	L L	C
AČŤQDKQAŀ	ΗF ΚΏΚΎΚ	HdeÂ	Actions: zoom orient center origin drag					
Object:	Align:	an la	preset find					
2/108	to sele	ection	generate	:				
	enabled all to states states	d to this this (*/ca)	assign s rename o duplicat delete o	∷ec ⊳bj ⊡ej	ec ob ec	st t je t	ru ct	c.
	matrix matrix	from to	hydrogen remove w	s at	er	s		
	matrix	reset Mouse Mo Buttons & Keys I Shft - Ctrl - CtSh 3	state masking sequence movement compute	:				

✔ 距离

- Pymol> distance (sele1), (sele2)
- ✔ 角度
- Pymol> angle (sele1), (sele2), (sele3)
- ✔ 二面角
- Pymol> Dihedral (sele1), (sele2), (sele3), (sele4)

angle [(sele1), (sele2), (sele3)]

dihedral [(sele1), (sele2), (sele3), (sele4)]

☞二级结构归属

- PyMOL具有快速合理的二级结构归属算法,即"dss",但由于二级结构归属的主观因素,dss的结果可能会不同于PDB文件中DSSP程序的结果。
- Pymol> dss *selection*
- 以2xuv.pdb为例
- Pymol> fetch 2xuv # 载入对象2xuv
- Pymol> as cartoon #显示cartoon
- Pymol> color cyans, 2xuv
- Pymol>dss 2xuv #对2xuv计算二级结构
- Pymol> fetch 2xuv, hdeb
- #载入对象,命名为hdeb
- Pymol> as cartoon #显示cartoon
- Pymol> color magentas, hdeb

③立体效果

- ▶ PyMOL能够支持的立体图形模式:
- Crosseye stereo
- Walleye stereo
- Hardware stereo
- Geowall stereo
- Sidebyside stereo
- Quadbuffer stereo
- ▶ 相关命令
- Pymol> stereo on #开启立体效果
- Pymol> stereo off
- Pymol> stereo crosseye #开启crosseye立体模式
- *注*:如果hardware stereo可用,那么quadbuffer stereo是默认的立体 模式,否则crosseye stereo是默认的。

a stereo pair

Crosseye stereo

Geowall stereo

Sidebyside stereo

☞光线追踪

- 光线追踪能制作出最高质量的分子图像。PyMOL是第一个拥有高速光
 线追踪器的全功能分子图像程序。
- ▶ 通过ray命令或点击"Ray"按钮,可以光线追踪PyMOL内的任意图像。内置的光线追踪器也使组配高质量的动画成为可能。

☞探测静电力学

• PyMOL能够利用泊松波尔兹曼方程计算水溶液状态下的静电力学。

Actions:	Generate:	Vacuum Electrostatics:
zoom orient center origin	selection symmetry mates vacuum electrostat	protein contact potential (local) NOTE: Due to short cutoffs, truncations, and lack of solvent "screening", these computed potentials are only qualitatively useful.
drag		Please view with skepticism!
preset find align	PyMOL Viewer	
generate		
rename object duplicate object delete object		(sele) A S H L C HdeA_e_chg A S H L C HdeA_e_map A S H L C HdeA_e_map A S H L C HdeA_e_pot A S H L C
hydrogens remove waters		
state masking sequence movement compute		Mouse Mode 3-Button Editing Buttons L M R Wheel s Keys Rota Move Mov2 Slab Shift Rotol Mov0 Mu02 Mov3 Ctrl Mov4 PkAt PkTB Mv32
		Ct5h MvAZ Orig Clip MovZ SnglClk PkAt Cent Menu

79.978

PyMOL)

③动画制作

- PyMOL有强大的分子动画制作功能。
- ▶ 几个重要概念
- States (状态): 状态指对象 (object) 某一个时间点特定的原子坐标。
- Scenes (场景):场景存储镜头(camera)的位置和定向、对象的活动信息、原子的可见性(visibility)、着色、表示形式和全局帧索引(global frame index)
- Frames (帧): 帧就像电影胶片中一个个单独的图片,在PyMOL中, 帧是由状态 (states) 而不是图片构成的, 而且对帧可以进行相关操作 (如camera的选转)。帧存储状态信息和场景信息。

▶ 重要命令

- ✓ Mset命令
- Mset命令用来指定那些状态作为动画的帧而被包括。
- Mset命令后紧跟定义整个动画的状态列表。每个状态采用以下形式之一:
- 1 # 一个数字:指定下一个放映的状态
- X # 一个数字紧随小写"x" (无空格):指定状态总共该重复的次数
- # 一个数字紧随连字号(无空格):指定状态按载入的顺序的放映。
 □ 举例
- mset 1 x30 #创建一个由状态1放映30遍组成的30帧的动画
- mset 1-30 # 创建一个30帧的动画:从状态1到30, "-"是"到或至"的意思,但其前必须有空格.
- mset 1 6 5 2 3 # 5 帧: 状态 1, 6, 5, 2, 3 放映
- 注:当只有一个状态时,状态1到状态x(x>=1)只能显示状态1;当n (n>=2)个状态时,若设定的x>n,那么不存在的状态不显示任何对象, 而不是一直显示状态n

✓ Mdo命令

- Mdo命令可以把一系列的PyMOL命令捆绑到帧上。
- "util"组件为产生mdo命令有两个脚本命令,"util.mrock"和 "util.mroll"。这些功能还没入档,但源程序可在 modules/PyMOL/util.py找到。
- util.mrock start, finish, angle, phase, loop-flag
- util.mroll start, finish, loop-flag

□ 举例

- 下面命令创建了一个30帧的动画,此动画180度摇摆蛋白。
- Pymol>load test/dat/pept.pdb # 载入结构
- Pymol>mset 1 x30 # 定义动画
- Pymol> util.mrock 1,30,180,1,1 # mdo命令创建摇摆+/-180度的30帧动 画
- Pymol> mplay

Example

➤ Ray-traced动画

- PyMOL能够在RAM中缓存一系列图片,然后以比它们渲染时高很多的速度放映。
- ✓ Cache_frames
- Cache_frames控制PyMOL是否把帧保存到内存。注:缓存的图片占 很大的内存空间,所以在使用此功能前先用"viewport"命令缩小窗 口。

□ 举例

- Pymol> viewport 320,240
- Pymol> orient
- Pymol> show sph
- Pymol> mset 1 x30
- Pymol> util.mrock 1,30,180,1,1
- Pymol> set ray_trace_frames,1
- Pymol> set cache_frames,1
- Pymol> mplay

Ray-traced动画

✓ 清除缓存

- 一旦把一系列帧载入RAM,这些帧会一直存在,即使操纵这个模型。 通过"mclear"命令或mclear按钮可清楚缓存:
- Mclear #清除帧的缓存
- ▶ 保存动画
- ✓ 通过"mpng"命令或"File"菜单可保存动画
- Mpng mov #将自动创建mov0001.png mov0002.png.....
- ✔ 如果想每帧都被光线追踪,应打开光线追踪,关闭并清除缓存:
- Pymol> set ray_trace_frames,1
- Pymol> set cache_frames,0
- Pymol> Mpng mov
- Pymol> mclear

PyMOL基本操作

Pymol的基本操作,包括窗口菜单、加载文件、图像处理等等。可以用鼠标操作,也可以用命令操作。

- Pymol是区分大小写的,不过目前为止Pymol还是只用小写。
- Pymol的命令都是由关键词(keyword)加上一些变量(argument)组成,格式如下:
- Pymol> keyword *argument*
- 其中关键词(keyword)如load、zoom、color、set等等,是必须的,;
 而变量则不是必须的,比如退出命令quit就不需要附加变量;
- Pymol> quit
- 通常情况下需要加变量,当不加任何变量时,Pymol会默认一个变量 all
- Pymol命令中需要避免的符号:
- !@#\$%^&*()'"[]{}\|~`<>?/

③对象选择

- Pymol> load *name*.pdb, *name* # 载入pdb文件,并命名
- Pymol> fetch object #直接从网上下载,不用加后缀
- ✓ 如果打开了多个PDB文件,想暂时关闭/打开某个对象,可以这样:
- Pymol> disable *object-name* Pymol> enable *object-name*
- ✔ 删除选定的目标或者整个对象:
- Pymol> delete *selection-name* Pymol> delete *object-name*

③对象显示

- Pymol> show representation #以不同方式显示蛋白质结构
 Pymol> hide representation
- Pymol>as representation #不论原来有多少种表示形式,只显示一种
- 其中*representation*可以为: cartoon, ribbon, dots, spheres, surface和 mesh。

③保存对象

- 1、保存文档文件
- Pymol>log_open *script-file-name .pml* #记录一个文本文档,该文件的 后缀名应为.pml
- Pymol>log_close #终止记录
- Pymol> @script-file-name # 调用该文档
- 2、保存会话文件
- 外部GUI窗口里面的File Save Session,创建一个会话文件(.pse), 下次打开Pymol时直接回到当前所在的状态。
- 两者区别: 文档文件可以编辑, 但会话文件不可以; 记录文档文件前必须先运行log_open命令, 而会话文件可以随时创建; 最后文档文件以文档形式运行(@), 而打开会话文件则必须选择外部GUI窗口中的File Open。
- 3、保存图片
- Pymol> ray #优化图像,使图像具有三维的反射及阴影特效 Pymol> png *file-name* #图片被保存在PyMOL安装默认的文件夹中

☞关于视点

- Pymol中的视点可以通过zoom、orient、view这三个命令来改变。
- Zoom(变焦)命令可使对象或选择在视野中央显示:如果对象或选择没显示在当前的视野,命令会使它显示;如果当前视野仅显示了一小部分,命令会使它充满视野。
- Pymol> zoom selection-expression
- □ Orient 命令会调整对象或选择,使其最大维度水平显示,次最大维度垂直显示,方便重新查看分子:
- Pymol> orient selection-expression
- □ View可用来保存或调用视角
- Pymol> view key, action
- 其中"key"是你随便给当前视角定的名字, "action"可以为: store或者recall。 如果不加任何"action",则默认为recall:
- Pymol> view v1, store #当前视野被命名为v1并保存
 Pymol> view v1, recall #调用保存的v1定向
 Pymol> view v1 # recall是默认的view语句,所以此命令行也是调用

☞关于选择

- Pymol> select *selection-name, selection-expression*
- *selection-name*即给选择表达起个名字,这个名字可以由字母[A/a-Z/z],数字[0-9]已经下划线[_]组成,但是要避免使用:
- !@#\$%^&*()'"[]{}\|~`<>?/
- *selection-expression*表示一些被选中的部分,它们可以是一些个原子, 一些个Helix,一些个Beta sheet,或者它们的混合物。
- *selection-expression=selector identifier*,其中"selector"定义了某类属性, 而"identifier"则在该类属性下需要被选择的部分。
- eg. Pymol> select test, name c+o+n+ca

常用selector

Selector	简写	Identifier及例子
symbol	e.	chemical-symbol-list 周期表中的元素符号 Pymol> select polar, symbol o+n
name	n.	atom-name-list pdb文件中的原子名字 Pymol> select carbons, name ca+cb+cg+cd
resn	r.	residue-name-list 氨基酸的名字 Pymol> select aas, resn asp+glu+asn+gln
resi	i.	residue-identifier-list pdb文件中基团的编号 Pymol> select mults10, resi 1+10+100 residue-identifier-range Pymol> select nterm, resi 1-10
alt	alt	alternate-conformation-identifier-list 一些单字母的列表,选择具有2种构型的氨基酸 Pymol> select altconf, alt a+b
chain	с.	chain-identifier-list 一些单字母或数字的列表 Pymol> select firstch, chain a

Selector	简写	Identifier及例子
segi	s.	segment-identifier-list 一些字母(最多4位)的列表 Pymol> select ligand, segi lig
flag	f.	flag-nummer 一个整数(0-31) Pymol> select f1, flag 0
numeric_type	nt.	type-nummer 一个整数 Pymol> select type1, nt. 5
text_type	tt.	type-string 一些字母(最多 4 位)的列表 Pymol> select subset, tt. HA+HC
id	id	external-index-number 一个整数 Pymol> select idno, id 23
index	idx.	internal-index-number 一个整数 Pymol> select intid, index 23
SS	SS	secondary-structure-type 代表该类结构的单字母 Pymol> select allstrs, ss h+s+l+""

有关比较的selector

Selector	简写	Identifier及例子					
b	b	comparison-operator b-factor-value 一个实数,用来比较b-factor Pymol> select fuzzy, b > 12					
q	q	comparison-operator occupancy-value 一个实数,用来比较occupancy Pymol> select lowcharges, q > 0.5					
formal_charge	fc.	comparison-operator formal charge-value 一个整数,用来比较formal charge Pymol> select doubles, fc. = -1					
partial_charge	pc.	comparison-operator partial charge-value 一个实数,用来比较partial charge Pymol> select hicharges, pc. > -1					

不需要加identifier的selector

Selector	简写	描述					
all	*	所有当前被Pymol加载的原 子					
none	none	什么也不选					
hydro	h.	所有当前被Pymol加载的氢 原子					
hetatm	het	所有从蛋白质数据库 HETATM记录中加载的原子					
visible	V.	所有在被"可见"的显示的对 象中的原子					
present	pr.	所有的具有定义坐标的原 子					

• 在ldentifier中用到的原子以及氨基酸的命名规则可以在下面的网址中找到: <u>http://www.wwpdb.org/docs.html</u>

配合逻辑操作子的selector

Operator	简写	效果与例子
not s1	! s1	选择原子但不包括s1中的 Pymol> select sidechains, ! bb
s1 and s2	s1 & s2	选择既在s1又在s2中的原子 Pymol> select far_bb, bb & farfrm_ten
s1 or s2	s1 s2	选择s1或者s2中的原子(也就是包含 全部的s1和s2原子) Pymol> select all_prot, bb sidechain
s1 in s2	s1 in s2	选择s1中的那些原子,其identifiers (name, resi, resn, chain, segi) 全部符 合s2中对应的原子 Pymol> select same_atom, pept in prot
s1 like s2	s1 l. s2	选择s1中的那些原子,其identifiers (name, resi)符合s2中对应的原子 Pymol> select similar_atom, pept like prot

0perator	简写	效果与例子
s1 gap X	s1 gap X	选择那些原子,其van der Waals半径至少和 s1的van der Waals半径相差X Pymol> select farfrm_ten, resi 10 gap 5
s1 around X	s1 a. X	选择以s1中任何原子为中心,X为半径,所 包括的所有原子 Pymol> select near_ten, resi 10 around 5
s1 expand X	s1 e. X	选择以s1中任何原子为中心,X为半径,然 后把s1扩展至该新的范围所包含的所有原子 Pymol> select near_ten_x, near10 expand 3
s1 within X of s2	s1 w. X of s2	选择以s2为中心,X为半径,并包含在s1中 的原子 Pymol> select bbnearten, bb w. 4 of resi 10
byres s1	br. s1	把选择扩展到全部residue Pymol> select complete_res, br. bbnear10
byobject s1	bo. s1	把选择扩展到全部object Pymol> select near_obj, bo. near_res
neighbor s1	nbr. s1	选择直接和s1相连的原子 Pymol> select vicinos, nbr. resi 10

另外,利用括号可以多重逻辑选择,如选择chain b,但不选择其中的residue 88:

Pymol> select chain b and (not resi 88)

注: 当有多个括号时, Pymol优先处理最里层括号里面的内容。

☞关于cartoon

- ▶ cartoon的命令格式如下:
- Pymol> cartoon type, (selection)
- ▶ cartoon的显示类型:
- Automatic: 默认的显示方式

Putty: 按R-factor显示, 值越大越粗

Loop

Tube

Oval

Dumbbell

Rectangle

Arrow

▶ 细节设置

✓ Sheet显示

- Pymol> set cartoon_flat_sheets, 1 #1开启
- Pymol> set cartoon_flat_sheets, 0 #0关闭
- ✔ Loop显示
- Pymol> set cartoon_smooth_loops, 1
 Pymol> set cartoon_smooth_loops, 0
- ✓ Helix的厚度和宽度
- Pymol> set cartoon_oval_width, 0.2
 Pymol> set cartoon_oval_length, 1.5
- ✓ sheet的厚度和宽度
- Pymol> set cartoon_rect_width, 0.5
 Pymol> set cartoon_rect_length, 1.5
- ✓ loop的半径
- Pymol> set cartoon_loop_radius, 0.2

- ✓ cartoon显示风格为fancy
- Pymol> set cartoon_fancy_helices, 1 # helix的边上会带有一个很细的 cylinder

Pymol> set cartoon_fancy_sheets, 1

- 此时设置helix的厚度,宽度,以及这个cylinder的半径分别是:
- Pymol> set cartoon_dumbbell_width, 0.1
 Pymol> set cartoon_dumbbell_length, 2
 Pymol> set cartoon_dumbbell_radius, 0.2

✔ 上色

• Pymol> set cartoon_color, green

✓ Refine

- Pymol> set cartoon_refine, 20
- #数字越大越漂亮,可选范围为1~20
- ✔ 设置透明
- Pymol> set cartoon_transparency, 0.5
- #可选范围为0~1

☞关于label

- ▶ label的命令格式如下:
- Pymol> label selection, expression
- Selection为已命名的对象, expression为标签的内容, 如name, resn, resi, chain等等。
- ➤ Label的一些设置
- ✔ 投影模式
- Pymol> set label_shadow_mode, 3
- 可选值
- 0: 无投影,
- 1: object有投影到label上,但是label本身无投影,
- 2: object有投影到label上, label也有投影,
- 3: object不投影到label上, label本身有投影

✔ 文字颜色

- Pymol> set label_color, color-name, selection
- Pymol> set label_font_id, 5 # pymol内置了12种字体,编号为5−16
 ✓ 字体大小
- Pymol> set label_size, -0.5 #正值单位为px,负值单位为Å
 Pymol> set label_size, 4
- ✓ label位置
- Pymol> set label_position, (x,y,z)

PyMOL应用实例

☞Cartoon及表面显示

1. Load the PDB file

- File -> Open -> 1w2i.pdb
- 2. Hide everything and then show protein cartoon
- PyMOL> hide everything, all
- PyMOL> show cartoon, all
- 3. Color the helix, sheet, and loop
- PyMOL> color purple, ss h
- PyMOL> color yellow, ss s
- PyMOL> color green, ss ""
- 4. Color chain A and B
- PyMOL> color red, chain A
- PyMOL> color blue, chain B

- 5. Create a surface display for chain A
- PyMOL> create obj_a, chain A
- PyMOL> show surface, obj_a
- 6. Color the active site residue
- PyMOL> select active, (resi 14-20,38 and chain A)
- PyMOL> color yellow, active
- PyMOL> turn y, -60; turn x, -20
- PyMOL> zoom active

Note: Rotate the molecule to see a hole around the yellow surface. That's the active site craddle for binding phosphate

7. Locate and display the bound formate ion in the active site.

- PyMOL> select ligand, active around 3.5 and resn FMT
- PyMOL> show sticks, ligand
- PyMOL> show spheres, ligand

- PyMOL> alter ligand, vdw=0.5
- PyMOL> rebuild
- PyMOL> set transparency=0.25
- 8. Rendering and output
- PyMOL> bg_color white
- PyMOL> ray
- File -> Save Image

☞活性位点侧链显示及距离的测量

- Display the side-chain of active site residues on top of the cartoon representation
- PyMOL> hide surface
- PyMOL> select sidechain, not (name c+n+o)
- PyMOL> show sticks, (active and sidechain)
- PyMOL> color blue, name n*
- PyMOL> color red, name o*
- PyMOL> color white, name c*
- Display and measure distances
- Wizard -> Measurement -> Distance
- Use this to measure the distance between the arginine N atoms and the oxygen atoms of formate ion.

- PyMOL> distance resi 20 and name NH2 and chain A, resi 1092 and name O2 and chain A
- PyMOL> hide labels
- PyMOL> ray
- File -> Save Image

☞电子密度图

- 1. Loading PDB file
- File -> Open -> 1w2i.pdb
- 2. Load the map file
- File -> Open -> 1w2i.map.xplor
- It takes a while to load the map file.
- 3. Zoom in the active site
- PyMOL> select active, (resi 14-20,38) and chain A
- PyMOL> zoom active
- PyMOL> hide all
- PyMOL> show stick, active
- 4. Locate and Display the active site water
- PyMOL> select active_water, ((resi 38 and name ND2 and chain A) around 3.5) and (resn HOH)

- PyMOL> show spheres, active_water
- PyMOL> alter active_water, vdw=0.5
- PyMOL> rebuild
- 5. Display the electron density around the active site atoms at sigma level=1.0
- PyMOL> isomesh mesh1, 1w2i.map, 1.0, (resi 14-20,38 and chain A), carve=1.6
- PyMOL> isomesh mesh1, 1w2i.map, 1.0, active, carve=1.6
- 6. Change the color of the map
- PyMOL> color grey, mesh1
- 7. Set the background color
- PyMOL> bg_color white
- 8. save the figures in PNG
- To render a figure with high resolution
- PyMOL> ray 2400,2400
- File -> Save Image


```
一. 含配体蛋白的表面显示
1.先把蛋白显示成cartoon模型,按链的不同给蛋白着色,A链红色,B链蓝色
as cartoon; color red, chain A; color blue, chain B
2. 将A链的表面显示出来
create obj a, chain A
show surface, obj a
3.洗择配体(甲酸盐离子)并将配体显示成球形
select ligand, resn FMT; color cyan, ligand; show sticks, ligand
show spheres, ligand
4.改变球形直径大小,并将表面透明度设成0.25
alter ligand, vdw=0.5
rebuild
set transparency=0.25
5.选择活性位点,并将活性位点的颜色显示成黄色,
select active, ligand around 6.5 and chain A;color yellow, active
zoom active
PyMOL> ray
File -> Save Image
动画制作
#定义动画
mset 1 x30
#mdo命令创建摇摆+/-180度的30帧动画
util.mrock start, finish, angle, phase, loop-flag
util.mrock 1,30,180,1,1
mplay
```

二. 活性位点侧链显示及距离的测量

Display the side-chain of active site residues on top of the cartoon representation

PyMOL> hide surface

PyMOL> select sidechain, not (name c+n+o)

PyMOL> show sticks, (active and sidechain)

PyMOL> color blue, name n*

PyMOL> color red, name o*

PyMOL> color white, name c*

Display and measure distances

Wizard -> Measurement -> Distance

Use this to measure the distance between the arginine N atoms and the oxygen atoms of formate ion.

PyMOL> distance resi 20 and name NH2 and chain A, resi 1092 and name O2 and chain A

PyMOL> hide labels

PyMOL> ray

File -> Save Image

三. 电子密度图
PyMOL> show spheres, active_water
PyMOL> alter active_water, vdw=0.5
PyMOL> rebuild
5. Display the electron density around the active site atoms at sigma level=1.0
PyMOL> isomesh mesh1, 1w2i.map, 1.0, (resi 14-20,38 and chain A), carve=1.6
PyMOL> isomesh mesh1, 1w2i.map, 1.0, active, carve=1.6
6. Change the color of the map
PyMOL> color grey, mesh1
7. Set the background color
PyMOL> bg_color white
8. save the figures in PNG
To render a figure with high resolution
PyMOL> ray 2400,2400
File -> Save Image

Thank you!