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Teaser Recent advances in the research and development of small-molecule anti-human
coronavirus therapies.
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Human coronaviruses (CoVs) are enveloped viruses with a positive-sense

single-stranded RNA genome. Currently, six human CoVs have been

reported including human coronavirus 229E (HCoV-229E), OC43 (HCoV-

OC43), NL63 (HCoV-NL63), HKU1 (HCoV-HKU1), severe acute respiratory

syndrome (SARS) coronavirus (SARS-CoV), and MiddleEast respiratory

syndrome (MERS) coronavirus (MERS-CoV). They cause moderate to severe

respiratory and intestinal infections in humans. In this review, we focus on

recent advances in the research and development of small-molecule anti-

human coronavirus therapies targeting different stages of the CoV life cycle.

Introduction
Coronaviruses (CoVs) primarily cause multiple respiratory and intestinal infection in humans and

animals [1]. Although the history of CoVs began in the 1940’s [2,3], the identification of first human

CoVs were reported in the 1960’s, as causative agents for mild respiratory infections. Subsequently

they were named as (i) human CoV 229E (HCoV-229E) and (ii) HCoV-OC43 [4–6]. In the 1970’s, the

discovery of new viruses, studies about the mechanism of action as well as the replication and

pathogenesis of CoVs were active among virologists. This led to discovery of another four new

human coronaviruses, namely (iii)HCoV- Hong KongUniversity 1 (HKU1) [7,8] (iv) HCoV-NL63, (v)

severe acute respiratory syndrome (SARS)-CoV and (vi) Middle East respiratory syndrome (MERS)-

CoV. The first four CoVs are universally circulated and contribute approximately one-third of

common cold in humans [9]. However, in severe cases, they can cause life-threatening pneumonia

and bronchiolitis in children and immunocompromised individuals [10–12] such as those under-

going chemotherapy and those with HIV-AIDS [13–15]. Besides that, these four coronaviruses have

been associatedwith entericandneurologicaldiseases [16–20]. In2003, SARS-CoV was identifiedasa

causative agent during the global pandemic SARS. According to the World Health Organization

(WHO), the emergence by SARS-CoV had affected 8422 cases in 32 countries, 916 of which died with

the fatality rate of 10-15% [21]. Following this outbreak, ten years after, another highly pathogenic

coronavirus MERS-CoV epidemic surfaced in Middle Eastern countries in 2013 [22]. However, the
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major outbreak was happened in the Republic of Korea in 2015 [23].

The virus infection was majorly observed in adults, although it can

affect any age of people [24]. Within a short time, the virus affected a

total number of 1401 individuals, 543 of which died with the

mortality of rate of �39% worldwide, while in Saudi Arabia alone

it was 37.5%[25].In the last two decades, there have been extensive

studies on theses human coronaviruses, especially on SARS- and

MERS-CoVs that led not only to understand coronaviruses biology

buthas also driven the discoveryof new therapeutics for incase ifany

future outbreaks. In this review, we focus on the recent development

of inhibitors targeting coronaviruses.

Taxonomy, structure and replication of human
coronaviruses
Coronaviruses are members of two subfamilies of Coronavirinae

and Torovirinae in the family of Coronaviridae, which in turn

comprise the order Nidovirales [26] (Fig. 1). The Coronavirinae sub-

family is further classified into four main genera: a-coronavirus,
b-coronavirus, g-coronavirus and d-coronavirus based on the Inter-

national Committee for Taxonomy of Viruses (Fig. 1). HCoV-229E

and HCoV-NL6 belong to a-coronavirus, HCoV-HKU1, SARS-CoV,

MERS-CoV, and HCoV-OC43 are b-coronaviruses, and they both

infectonly mammals.g-Coronavirus andd-coronavirus infectbirds,
but some of them can also infect mammals [27]. Based on current

sequencedatabases, ithasbeendiscoveredthatall humanCoVshave

animal origins; SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-

229E are considered to have originated in bats; HCoV-OC43 and

HKU1N are likely originated from rodents [28,29].

Under the electron microscope, coronaviruses are enveloped,

single-stranded positive-sense RNA virus with the largest genome

size, ranging approximately from 26-32-kilobases found to date [30].

The genomic RNA, which acts as a messenger RNA (mRNA), plays an

important role in the initial RNA synthesis of the infectious cycle,
Nid
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FIGURE 1

Schematic representation of the taxonomy of Coronaviridae (according to the Inte
belong to the Alpha- and Beta-coronaviruses genuses, respectively.
template for replication and transcription and as a substrate for

packaging into the progeny virus. In all CoVs, 5’ two-thirds of the

genome encodes a replicase polyproteins, pp1ab, which comprises

of two overlapping open reading frames (ORFs), ORF1a and ORF1b.

These ORFs are then processed by viral proteases to cleave into 16

non-structural proteins that are involved in genome transcription

and replication. The 3’ terminus encodes CoV canonical set of four

structural proteins; including (i) the nucleocapsid (N) protein, a

basic RNA-binding protein, (ii) a spike protein (S), a type of glyco-

protein I, (ii) a membrane protein (M) that spans the membrane, and

(iii) an envelope protein (E), a highly hydrophobic protein that

covers the entire structure of the coronavirus [31] (Fig. 2). These

accessory proteins are not only important for virion assembly but

mayalso have an additional link thatthey suppress the host immune

response to facilitate viral replication.

The replication of coronavirus begins with the binding of its

spike protein (S) on the cell surface molecules of the host. This

receptor recognition is important for initiating virus entry into the

host cells, thereby playing a major role in the tissue and host

species tropism of viruses. The receptors used by all human CoV

are known (see Table 1): Aminopeptidase N by HCoV-229E [32], 9-

O-acetylated sialic acid by HCoV-OC43 and HCoV-HKU1 [33,34],

angiotensin-converting enzyme 2 (ACE2) by SARS-CoV [35] and

HCoV-NL63 [36,37] and dipeptidyl peptidase 4 (DPP4) by MERS-

CoV [38].

Apart from this, some CoVs may also enter into the cells with

the help of proteases; for example, the role of cathepsin L has been

linked with the SARS-and MERS-CoVs entry, transmembrane pro-

tease serine 2 (TMPRSS2) and airway trypsin-like protease

TMPRSS11D could activate the S protein for virus entry at the cell

membrane during HCoV-229E and SARS-CoV infection [39–41].

Upon the entry, the viral particle is uncoded and ready for

translation ORF 1a and 1b into polyproteins pp1a (4382 amino
ovirales
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FIGURE 2

(A) Structure of coronavirus and (B) its replication: (Ab: Antibody; DPP4: Dipeptidase Peptidyl 4; TMPRSS2: Transmembrane Protease, Serine 2; PLpro: Papain-like
Protease; 3CLpro: 3-C-like Protease; RdRp: RNA dependent and RNA polymerase; nsp: Non-structural protein, ORF: open reading frame, ACE2: Angiotensin
converting enzyme, CD13: human aminopeptidase N).Entry targets: (I) Spike protein (RBD, Fusion intermediates); (II) Receptors; a. DPP4/CD26 for MERS, b. ACE2
for SARS and HCoV-NL63, c. 9-O-Acetylated sialic acid for HCoV-OC43 and HCoV-HU1, d. CD13 for HCoV-229E (III) Surface proteases: TMPRSS2. (IV) Endosomal
proteases. Polyprotein processing targets: a. Papain-like protease (PLpro), b. 3C-like protease (3CLpro). Replicase targets: a. ADP-ribose-1'-phosphatase (nsp3), b.
RNA-dependent and RNA polymerase (nsp12), c. Helicase (nsp13), d.Exonuclease (nsp14), e. Endoribonuclease (nsp15), f. 2'-O-methyltransferase.
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acids) and pp1ab (7073 amino acids) that are processed by pro-

teases 3-C-like protease (3CLpro) and papain-like protease (PLpro).

Subsequently, these polyproteins are cleaved into at least 15 non-

structural proteins (nsp), which assembles and form the replica-

tion-transcription complex. With the aid of replicases, the full-

length positive strand of genomic RNA is transcribed to form a full-

length negative-strand template for the synthesis of new genomic

RNAs. These mRNAs are then transcribed and translated to pro-

duce the structural and accessory proteins. Interrupting any
670 www.drugdiscoverytoday.com
replication processes would become a potential molecular target

to develop therapeutics.

Development of anti-CoV therapeutics
Although all human CoVs are a real threat to human populations,

numerous researches have mainly been focused on SARS- and

MERS-CoVs infections. Because they were responsible for severe

illness when compared to other CoVs. Numerous agents have been

identified to inhibit the entry and/or replication of SARS- and
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TABLE 1

Classification, discovery, cellular response and natural host of the coronaviruses

hCoV genera Coronaviruses Discovery Cellular receptor Natural Host(s)

a-Coronaviruses HCoV-229E
HCoV-NL63

1966
2004

Human aminopeptidase N (CD13)
ACE2

Bats
Palm Civets, Bats

b-Coronaviruses HCoV-OC43
HCoV-HKU1
SARS-CoV
MERS-CoV

1967
2005
2003
2012

9-O-Acetylated sialic acid
9-O-Acetylated sialic acid
ACE2
DPP4

Cattle
Mice
Palm Civets,
Bats, Camels
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MERS-CoVs in cell culture or animal models [41,42]. Due to the

high morbidity and mortality rates of SARS and MERS, several

antiviral drugs and immunomodulators have been used empiri-

cally or evaluated in uncontrolled trials [41,43–53] (see for repre-

sentative examples 1–6 in Fig. 3).

Ribavirin (1) has been widely used for treating a variety of viral

infections, but for SARS, the clinical outcome of the antiviral

intervention had no significant effect on patients [41,44]. On

the other hand, the patients who received ribavirin (1), lopinavir

(10, see Fig. 4)- ritonavir (2) and a corticosteroid had lower 21-day

acute respiratory distress syndrome (ARDS) and death rates than

those who received ribavirin and a corticosteroid [54,55] combi-

nation therapy using interferon a-1 and corticosteroid was asso-

ciated with improved oxygen saturation and more rapid resolution

of radiographic lung opacities than systemic corticosteroid alone

(uncontrolled study) [56]. The use of the corticosteroid, methyl-

prednisolone (3, Fig. 3) as a therapeutic intervention for SARS

patients was associated with an increased 30-day mortality rate

(adjusted OR = 26.0, 95% CI = 4.4–154.8). However, disseminated

fungal infection and avascular osteonecrosis occurred following

the prolonged systemic corticosteroid therapy [57–59]. A random-

ized, placebo-controlled study showed that plasma SARS-CoV RNA

levels in weeks 2-3 of the illness were higher in patients given
FIGURE 3

Potential anti-viral therapeutics used in patients with SARS and MERS infections.
hydrocortisone (n = 10) than those given normal saline (n = 7)

in the early phase of the illness, suggesting that early use of

pulsed methylprednisolone (3) might prolong viremia. In the

case of patients with MERS, the combination of ritonavir (2) +

interferon a2a or interferon a-2b resulted in no significant

effect on clinical outcome; case-control study showed signifi-

cantly improved survival (14 out of 20 and 7 out of 24 in the

treated and control groups, respectively; P = 0.004) at 14 days,

but not at 28 days [46–50].

Retrospective analyses showed that the combination of ritona-

vir (2) + interferon b-1a had no significant effect on clinical

outcome [48]. In another study, the combination of ribavirin

(1), ritonavir (2) + interferon a-2a resolved viremia within 2 days

after commencement of treatment in a patient with severe MERS.

Patients with severe MERS who were treated with methylprednis-

olone (3) with or without antivirals and interferons had no favor-

able response [48,49].

Approaches for the development of anti-viral drugs
Typically, thedrug-discoveryprogramtodevelopnewpotentanti-viral

agents and to obtain approval for clinical use takes more than 10 years.

Until now, no effective vaccines or drugs are approved, while potent

inhibitors are in clinical development to treat coronavirus infections.
Drug Discovery Today 

www.drugdiscoverytoday.com 671



REVIEWS Drug Discovery Today �Volume 25, Number 4 �April 2020

Drug Discovery Today 

FIGURE 4

Drugs repurposed on coronaviruses infections.
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To speed up the discovery of potential treatment options for human

pathogenic coronaviruses, two general approaches were employed,

especially for SARS- and MERS- CoVs that are linked with more severe

diseases than the other CoVs.

The first approach is repurposing of broadly acting antiviral

drugs that have been used for other viral infections or other

indications. These drugs have the obvious benefits of being already
672 www.drugdiscoverytoday.com
available with known pharmacokinetic and pharmacodynamic

properties, solubility, metabolic stability, side effects, and dosing

regimens. Drugs including interferon a, b, and g, ribavirin (1) and

inhibitors of cyclophilin [60–62] were discovered using this ap-

proach.

The combination therapy of interferon and ribavirin showed

the best result in treating MERS-CoV infection. Also, different
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TABLE 2

Broad-spectrum [235_TD$DIFF]inhibitorsof human coronaviruses

Compound name Bioactivity HCoV-OC43 EC50

(CC50)
HCoV-NL63
EC50 (CC50)

MERS-CoV
EC50 (CC50)

MHV-A59
EC50 (CC50)

Lycorine Inhibits cell division, antineoplastic, antiviral 0.15 (4.37) 0.47 (3.81) 1.63 (3.14) 0.31 (3.51)
Emetine Inhibits RNA, DNA, and protein synthesis 0.30 (2.69) 1.43 (3.63) 0.34 (3.08) 0.12 (3.51)
Mycophenolate mofetil Immune suppressant, antineoplastic, antiviral 1.58 (3.43) 0.23 (3.01) 1.54 (3.17) 0.27 (3.33)
Phenazopyridine Analgesic 1.90 (>20) 2.02 (>20) 1.93 (>20) 0.77 (>20)
Mycophenolic acid Immune suppressant, antineoplastic, antiviral 1.95 (3.55) 0.18 (3.44) 1.95 (3.21) 0.17 (4.18)
Pyrvinium pamoate Anthelmintic 3.21 (>20) 3.35 (>20) 1.84 (19.91) 4.12 (19.98)
Monensin sodium Antibacterial 3.81 (20) 1.54 (>20) 3.27(>20) 0.18 (>20)
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types of interferons including IFN-a-2b and IFN-b-1b have been

employed in the management of patients with MERS-CoV infec-

tion [63]. Recently, several research groups reported the discovery

of anti-viral drugs using the drug repurposingapproach.

Shen et al reported broad-spectrum inhibitors of human cor-

onaviruses, see Table 2 [64]. They identified seven compounds

(lycorine, emetine, monensin sodium, mycophenolate mofetil,

mycophenolic acid, phenazopyridine, and pyrvinium pamoate)

from HTS screening as broad-spectrum inhibitors according to

their strong inhibition of replication by four CoVs in vitro at

low-micromolar concentrations. These seven broad-spectrum

inhibitors suppressed the replication of all CoVs in a dose-depen-

dent manner and with low EC50 values. Although the cytotoxic

concentration for some compound is as high as of their inhibi-

tions, phenazopyridine, pyrvinium pamoate, and monensin sodi-

um displayed less CC50 values. Further, in vivo studies showed

lycorine protected mice against lethal HCoV-OC43 infection.

In a search of potential anti-viral agents against CoVs, de Wilde

et al identified four drugs such as chloroquine (7), chlorpromazine

(8), loperamide (9) and lopinavir (10) from the screening of FDA

approved drugs library (Fig. 4) [65]. They all were able to inhibit the

replication of MERS-CoV, SARS-CoV as well as HCoV-229E in the

low micromolar range, which suggest that they could be used for

the broad spectral anti-viral activity. As a mode of action, 7

inhibited the replication of MERS-CoV in a dose-dependent man-

ner with an EC50 of 3.0 mM and the inhibition contributed to the

blockade of the virus at a very early stage. Compound 7 was

previously reported as an effective anti-viral agent against flavivi-

rus, influenza virus, HIV [66], Ebola virus [67], and Nipha-Hendra

virus [68]. Chlorpromazine (8) was another hit compound resulted

from the screening and inhibited the replication of MERS-CoV

with an EC50 of 4.9 mM. Chlorpromazine (8) is the first antipsy-

chotic drug developed for the treatment of schizophrenia [69] and

mechanistically it inhibited the clathrin-mediated endocytosis. It

has also been reported to inhibit the replication of hepatic C virus

[70] (HCV), alphavirus [71], mouse hepatitis virus (MHV-2) [72]

and other coronavirus SARS-CoV [73]. The mechanistic study of

chlorpromazine (8) on MERS-CoV indicated that it inhibited the

virus at both an early and postentry stage, suggesting that an effect

on clathrin-mediated endocytosis was not only the sole antiviral

mechanism. Loperamide (9), an antidiarrheal opioid receptor

agonist, which reduces intestinal motility [74], inhibited the

replication of MERS-CoV. Additionally, it inhibited the other

two coronaviruses in the low micromolar range (4 to 6 mM).

Lopinavir (10) is an anti-HIV protease inhibitor, which also inhib-

ited the replication of MERS-CoV with an EC50 of 8.0 mM. It was
previously reported to inhibit the SARS-CoV main protease (Mpro)

[75] and therefore, it was presumed that it might also target the

Mpro of MERS-CoV.

Current anti-MERS-CoV agents have been primarily resulted

from previous drugs used for the SARS-CoV infection. To identify

potential antiviral agents against MERS-CoV, Shin et al. screened a

library consisting of 2334 approved drugs and pharmaceutically

active compounds [76]. This yielded a series of hit compounds,

primarily categorized as anti-protozoal, anti-cancer, anti-psycho-

tics (11–18, Fig. 4), with micromolar inhibitory activity ranging

from 2.1 to 14.4 mM (Fig. 4). Among them, saracatinib (14) was

particularly important as it showed an excellent anti-MERS-CoV

activity with an EC50 of 2.9 mM and a CC50>50 mM. Saracatinib

(14) is an orally available small molecule drug used for the treat-

ment of tumor malignancies through the Src-family of tyrosine

kinases (SFKs) inhibition. It also inhibited other coronaviruses

SARS-CoV (EC50 2.4 mM) and HCoV-229E (EC50 5.1 mM), and

feline infectious peritonitis (FIPV, EC50 7.0 mM) within a not-toxic

range of concentration. An in vitro study of the anti-viral effect of

saracatinib (14) [found to suppress the early stages of the MERS-

CoV life cycle in Huh-7 cells through a possible suppression of the

SFK signaling pathways. Interestingly, co-treatment of saracatinib

(14) with gemcitabine, a deoxycytidine analog that is commonly

used for the treatment of cancers [77,78] showed a synergistic anti-

viral effect with a minimal cytotoxic effect. This supports the

hypothesis of using them in a combination therapy to treat

CoV diseases.

In continuation, several classes of compounds that have been

used for other indications identified as potent inhibitors of SARS-

and MERS-CoVs. These drugs were classified into different thera-

peutic groups as neurotransmitter inhibitors, estrogen receptor

antagonists, kinase signaling inhibitors, protein-processing inhi-

bitors, inhibitors of lipid or sterol metabolism and inhibitors of

DNA synthesis or pair (see, for representative examples, Fig. 5 and

the activities in Table 3). Antidiarrheal agent loperamide (9), or

anti-HIV-1 agent lopinavir (10) were able to inhibit both MERS-

and SARS-CoVs infection in the low-micromolar range and was

linear with the study by de Wilde et al. [79]. Antiparasitics, meflo-

quine (20), and amodiaquine dihydrochloride (21) or antibacteri-

al, emetine dihydrochloride hydrate (19) in which that function

was not linked to coronaviruses in general, showed antiviral

activity against both CoVs. Cathepsins are important for the

fusion step during virus entry of coronavirus [80]. Cathepsin

inhibitor, E-64-D (22), blocked the MERS-CoV and SARS-CoV at

the entry stage. The neurotransmitter inhibitor triflupromazine

(33) inhibited both SARS-CoV and MERS-CoV. In addition to that,
www.drugdiscoverytoday.com 673
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FIGURE 5

Repurposing of various classes of drugs on SARS-and MERS-CoVs.
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other neurotransmitters fluphenazine (29) and promethazine (30)

were reported to inhibit MERS-CoVs protein-mediated cell-cell

fusion with IC50 values of about 20 and 29 mM, respectively

[81]. Kinase signaling pathway inhibitors imatinib mesylate (35)

and dasatinib (36) are known inhibitors of the Abelson murine

leukemia viral oncogene homolog-1 pathway (ABL-1) and were

active against both MERS-CoV and SARS-CoV. The data suggest
674 www.drugdiscoverytoday.com
that the ABL-1 pathway may be important for the viral replication

and inhibitors of this pathway may have the potential in the

discovery of antiviral agents.

The identified DNA synthesis inhibitors (for example, gemcita-

bine hydrochloride, 23) those were active against at least one

coronavirus, suggest that these drugs have potential as antiviral

therapy against coronaviruses. Toremifene citrate (25) is an
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TABLE 3

Compounds with activity against MERS-CoV and SARS-CoV

Pharmaceutics Class MERS-CoV
EC50 (mM)

SARS-CoV
EC50 (mM)

Emetine dihydrochloride hydrate (19) Antibacterial agent 0.014 0.051
Mefloquine (20) Antiparasitic agent 7.41 15.55
Amodiaquinedihydrochloridedehydrate (21) Antiparasitic agent 6.21 1.27
Loperamide (9) Antidiarrheal agent 4.8 5.90
Lopinavir (10) HIV-1 inhibitor 8.0 24.4
E-64-D (22) Cathepsin inhibitor 1.27 0.76
Gemcitabine hydrochloride (23) DNA metabolism inhibitor 1.21 4.95
Tamoxifen citrate (24) Estrogen receptor inhibitor 10.11 92.88
Toremifene citrate (25) Estrogen receptor inhibitor 12.91 11.96
Terconazole (26) Sterol metabolism inhibitor 12.20 15.32
Fluspirilene (27) Neurotransmitter inhibitor 7.47 5.96
Thiothixene (28) Neurotransmitter inhibitor 9.29 5.31
Fluphenazine hydrochloride (29) Neurotransmitter inhibitor 5.86 21.43
Promethazine hydrochloride (30) Neurotransmitter inhibitor 11.80 7.54
Astemizole (31) Neurotransmitter inhibitor 4.88 5.59
Chlorphenoxamine hydrochloride (32) Neurotransmitter inhibitor 12.64 20.03
Triflupromazine hydrochloride (33) Neurotransmitter inhibitor 5.75 6.39
Clomipramine hydrochloride (34) Neurotransmitter inhibitor 9.33 13.23
Imatinibmesylate (35) Kinase signaling inhibitor 17.68 9.82
Dasatinib (36) Kinase signaling inhibitor 5.46 2.10
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estrogen receptor 1 antagonist that inhibits both MERS-CoV and

SARS-CoV with EC50 of 12.9 and 11.97 mM. respectively.

The second approach for anti-CoV drug discovery involves the

de novo development of novel, specific agents based on the geno-

mic and biophysical understanding of the individual coronavirus.

Examples include siRNA molecules or inhibitors that target spe-

cific viral enzymes involved in the viral replication cycle, mAbs

that target the host receptor, inhibitors of host cellular proteases,

inhibitors of virus endocytosis by the host cell, human or human-

ized mAbs that target the S1 subunit RBD and antiviral peptides

that target the S2 subunit.

Virus-based anti-CoV therapeutics
Despite their high species diversity, CoVs share key genomic ele-

ments that are essential for the design of therapeutic agents.
TABLE 4

Structure and IC50 of compounds against MERS-CoV PL protease

Compound Chemical structure 

6-Mercaptopurine (43) 

6-Thioguanine (44) 

N-Ethylmaleimide (45) 

Mycophenolic acid (46) 
The large replicase polyprotein 1a (pp1a) and pp1ab are processed

and cleaved by two viral proteases, PLpro, and the 3CLpro, to produce

non-structural proteins (NSPs) such as RNA-dependent RNA poly-

merase (RdRp) and helicase, which are involved in the transcription

and replication of the virus [82]. Numerous enzyme inhibitors

targeting these proteins have shown anti-CoV activities in vitro.

Inhibitors that target nucleosides or nucleotides are building

blocks of viral nucleic acids and they have broad-spectrum activity

against a wide range of coronaviruses as well as other viruses, in

general. Mycophenolate (5, Fig. 3), is an immunosuppressant drug

used to prevent rejection in organ transplantation. It inhibits

inosine monophosphate dehydrogenase, a key rate-limiting en-

zyme in the de novo purine synthesis pathway which converts

inosine monophosphate to guanosine monophosphate [83]. The

active molecule, mycophenolic acid (46, see for structure Table 4),
IC50 (mM)

Peptide cleavage DUB activity

26.9 25.8

24.4 12.4

45.0 ND

247.6 222.5
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FIGURE 6

Overview of SARS and MERS-CoVs polyproteins. (A) Cleavage positions of PLpro and 3CLpro are shown by arrows. B) Cleavage site comparison between SARS and
MERS PLpro enzymes (For SARS-PLpro: (L/I)XGG#(A/D)X and for MERS-PLpro: LXGG#(A/K)X).

Review
s
�K

EY
N
O
TE

R
EV

IEW
exhibits broad-spectrum in vitro anti-viral activity against various

viruses, including hepatitis B virus (HBV), hepatitis C virus (HCV)

and arboviruses [82]. Recently, mycophenolic acid was identified

as a potential anti-MERS-CoV drug by a high-throughput screen-

ing approach and has a potent anti-MERS-CoV activity in vitro [83].

However, a subsequent study in a non-human primate model did

not provide a positive result as the treatment of MERS-CoV

infected common marmosets with mycophenolic acid had a worse

outcome than untreated animals did [84].

Proteases are indispensable for the viral life cycle and they play

an essential role in viral replication by mediating the maturation

of viral replicases. Therefore, targeting proteases has become an

attractive approach for developing potential antiviral drugs. Pro-

tease inhibitors block the replication of coronaviruses (CoVs),

including the causative agents of MERS and SARS infection. The

papain-like protease (PLpro) and a 3C-like protease (3CLpro also

known as the main protease) are important two proteases that

mediate the process replicase polyproteins pp1a and pp1b. PLpro is

a cysteine protease that uses the thiol group of cysteine as a

nucleophile to attack the carbonyl group of the scissile peptide

bond for cleavage at first three positions of its polyprotein to

produce three nonstructural proteins, while 3CLpro cleaves the

remaining 11 locations, releasing non-structural proteins from

nsp4 to nsp16. As a result, sequence motifs recognized by

MERS-CoV PLpro and SARS-CoV PLpro are (L/I)XGG#(A/D)X and

LXGG#(A/K)X, respectively (Fig. 6).

Dehaen et al. reported a novel library of fused 1,2,3-triazole

derivatives against coronavirus 229E in HEL cells [85]. Structure-

activity relationship studies showed that some compounds dis-

played moderate inhibitory activities in micromolar range without

alterations of the normal cell morphology in confluent HEL cell

cultures at concentrations up to 100 mM. For example, com-

pounds 37-41 (see Fig. 7). Although the authors claimed that
676 www.drugdiscoverytoday.com
these inhibitors could inhibit the 3CL protease of CoV-229E based

on the molecular modeling of previously reported inhibitors, they

could not confirm with the experiments.

Grünweller et al. reported the broad-spectrum activity of natural

product silvestrol (42, Fig. 7), a specific inhibitor of the DEAD-box

RNA helicase eIF4A, for MERS-CoV and HCoV-22E on viral trans-

lation using a dual luciferase assay and virus-infected primary cells

[86]. Silvestrol was recently shown to have potent antiviral activity

in Ebola virus-infected human macrophages. They found that

silvestrol is also a potent and non-toxic inhibitor of cap-dependent

viral mRNA translation in CoV-infected human embryonic lung

fibroblast (MRC-5) cells. It was found to be highly effective against

both infections with EC50 values of 1.3 nM and 3 nM, respectively.

For MERS-CoV, the potent antiviral activities of silvestrol were also

confirmed using peripheral blood mononuclear cells (PBMCs) as a

second type of human primary cells. Mechanistically Silvestrol

strongly inhibited the expression of CoV structural and nonstruc-

tural proteins (N, nsp8) and the formation of viral replication/

transcription complexes. They also confirmed that silvestrol found

to inhibit human rhinovirus (HRV) A1 and poliovirus 1 (PV),

respectively.

Snijder et al reported alisporivir, a non-immunosuppressive

cyclosporin A-analog (structure not shown), inhibited the replica-

tion of different human coronaviruses, including 229E, MERS- and

SARS-coronavirus in low micromolar concentrations [87]. Thein-

vestigation suggest that alisporivir inhibits MERS- and SARS-CoV

replication by cell-culture based screening assays relying on the

rapid cytopathic effect (CPE) observed in coronavirus-infected

cells.

MERS-CoV and SARS-CoV PL proteases inhibitors
In anti-viral therapy, PLpro is an important target as it is a multi-

functional protein involved in proteolytic, deubiquitination,
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FIGURE 7

1,2,3-Triazole derivatives (37-42) against coronavirus-229E.
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de-ISGylation (ISG = interferon-stimulated gene), and viral eva-

sion of the innate immune response in addition to its proteolytic

activity [88,89]. Several X-ray crystallography studies have facili-

tated the characterization of these PLpro enzymes and the identifi-

cation of PLpro inhibitors [90]. Numerous SARS-CoV PLpro

inhibitors belonging to different classeshave been identified, in-

cluding small-molecule inhibitors, thiopurine compounds, natu-

ral products, zinc ion, and zinc conjugate inhibitors and

naphthalene inhibitors [91]. 6-Mercaptopurine (43), 6-thiogua-

nine (44) and N-ethylmaleimide (45) as well as the immunosup-

pressive drug, mycophenolic acid (46), were all independently

able to inhibit the proteolytic activity and deubiquitination of

MERS-CoV PLpro (Table 4) [92]. Compared with N-ethylmaleimide

(45), 6-mercaptopurine (43), 6-thioguanine (44) were more effec-

tive inhibitors, while mycophenolic acid (46) was a less effective

inhibitor against the MERS-CoV PLpro.

Disulfiram (47, Fig. 8) is an FDA drug and has been used in

alcohol aversion therapy. This drug was reported to inhibit the

activity of methyltransferase [93], kinase [94], and urease [94],

all by reacting with cysteine residues, suggesting broad-spec-

trum characteristics [95]. Notably, disulfiram (47) has been

reported as an allosteric inhibitor of MERS-CoV PLpro [95]. It

was suggested that the administration of 41 together with

compound 44 and/or 45, could synergistically inhibit MERS-

CoV papain-like protease [95].

8-(Trifluoromethyl)-9H-purin-6-amine (48, F2124–0890, Fig. 8)

was identified as a selective dual inhibitor of both PLpro enzymes of

MERS-CoV and SARS-CoV through a high-throughput screening of

molecule library containing 25,000 chemical entities [96]. As a
mode of action, this compound acts as a competitive inhibitor

against MERS-CoV with an IC50 value of 6.0 mM, while acts as an

allosteric inhibitor against SARS-CoV (IC50 11 mM). Compound 48

was first synthesized in 1958 as a potential anticancer agent, and in

the late 1980s and early 1990s, the compound was used as a

reactant for designing arrhythmia and antiviral drugs as well as

compounds set to regulate plant growth [97,98].

Naphthalene amides 49-52 (Fig. 8) [99–102] were reported to

inhibit MERS-CoV PLpro but were inactive against SARS-CoV PLpro,

suggesting the structural difference in the binding mode of both

PL proteases. This was supported by the recent X-ray crystal

structures of SARS-CoV PLpro complex with the lead inhibitors

50 and 51. These structures revealed that inhibitors did not bind to

the catalytic site of SARS CoV PLpro but to the BL2 loop, which

appears to prevent the accessibility of substrate to the active site,

and thereby inhibiting the enzymatic activity. Structural and

sequence analysis at BL2 loop of SARS-CoV PLproand MERS

CoV PLpro suggested that they both have a difference in key amino

acid residues that are responsible for inhibitor binding. For exam-

ple, Y269 and Q270 are responsible for inhibitor binding in SARS-

CoV PLpro, whereas T274 and A275 in MERS CoV PLpro. These

findings suggest that making dual inhibitors targeting PLpro of

SARS-and MERS-CoVs is difficult.

Park et al. assessed the inhibitory activity of polyphenols derived

from B. papyrifera against SARS- and MERS-CoVs [103]. The isolated

polyphenols markedly inhibited 3CL and PL CoV proteases of both

SARS and MERS. The IC50 values of these compounds, though

higher than those of peptide-derived inhibitors, were still in the

low micromolar range. In particular, the isolated compounds
www.drugdiscoverytoday.com 677
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FIGURE 8

Representative examples of MERS- and/or SARS-CoV PLpro inhibitors (47-54).
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exerted significant SARS-CoV PLpro inhibitory activity through

noncompetitive inhibition. Compounds 53 and 54, showed the

most potent PLpro inhibitory activity with IC50 values of 9.2 and

3.7, respectively. Additionally, they performed detailed protein-

inhibitor SPR-binding analyses of compound 54 with SARS-CoV

PLpro. Compound 54 strongly inhibited the cleavage of both

ubiquitin and ISG15 (IC50 values of 7.6 and 8.5 mM, respectively).

3CLpro are cysteine proteases, which are analogs to the main

picornavirus 3C protease, a family of viruses that also cause

respiratory illness. A broad-spectrum anti-CoV inhibitor N3 (55,

peptide derivative, Fig. 9) was identified to inhibit the proteolytic

activity of MERS-CoV 3CLpro with an IC50 of 0.28 mmol/L. The X-

ray crystal structure of MERS-CoV 3CLpro with inhibitor 55 con-

firms that inhibition of 3CLpro was similar to the mechanism to

other CoVs [104], as the inhibitor binds with the interface of

domain I and II of MERS-CoV 3CLpro with an EC50 of about

0.3 mM [104].

AG7088 (56, peptide derivative), a potent inhibitor of rhinovi-

rus 3Cpro with Michael acceptor functionality, failed to inhibit

SARS-CoV 3CLpro [105]. However, a series of AG7088 analogs were

reported to combat CoVs by targeting 3CLpro [106]. The screening
678 www.drugdiscoverytoday.com
of peptidomimetics (57–60; see Fig. 9) which contains a Michael

acceptor group, (i.e., a,b-unsaturated carbonyl) showed moderate

anti-CoV activities [107–109]. Enterovirus inhibitors 61, 62, and

63, were recently shown to inhibit MERS-CoV with EC50 values

ranging from 1.7 to 4.7 mM [110]. These inhibitors provide an

excellent starting point for the development of natural substrate

mimicking (or peptidomimetics) compounds against SARS- and

MERS-CoV 3CLpro. Benzotriazole derivatives (64,65) that have an

activated carbonyl functionality displayed inhibition against both

SARS-CoV 3CLpro and MERS-CoV 3CLpro [111].

The 5-chloropyridyl esters GRL-001 (66) and 67 (Fig. 10) have

been shown to block the replication of SARS- and MERS-CoV

3CLpro [112,113] and could serve as potential leads for the future

drug development for anti-coronavirus therapy. Pyrazolone based

neuraminidase (NA) inhibitors 68–70 (Fig. 10) were reported to

inhibit the MERS-CoV 3CLpro with moderate potencies in the

range of 5.8-7.5 mM. The pharmacophore moieties phenyl at R3

and carboxylate, either R1 or R4 were suggested to be essential for

the antiviral activity [114]. A dipeptidyl transition state 3CLpro

inhibitor GC376 (71) inhibited the activity of MERS-CoV 3CLpro

with an EC50 of 1.6 mM by fluorescence resonance energy transfer
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FIGURE 9

Structure of 3CLpro inhibitors that contain Michael acceptor, aldehyde and activated carbonyl functional groups.
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(FRET) assay [115]. Another pyrrolidinone based peptide GC813

(72) as well as its derivatives 73-74 displayed inhibition for MERS-

CoV with EC50 values of 0.5 mM, 0.5 mM, and 0.8 mM in cell

culture [116].

Kenichi et al reported new non-peptide SARS-CoV 3CLpro inhi-

bitors [117] by introducing decahydroisoquinoline at the S2 posi-

tion by connecting the cyclohexyl group of the substrate-based

inhibitor 75 (Fig. 11) [118]. The resulting compounds (76-80,
Fig. 11) showed moderate but very promising inhibitory activities

against SARS-CoV 3CLpro, which suggested that the decahydroi-

soquinoline scaffold could be a novel scaffold at the S2 position for

SARS-CoV 3CLpro inhibition.

The co-crystal structures of SARS-CoV 3CLpro with decahy-

droisoquinoline inhibitors (76-80) revealed that P2-decahy-

droisoquinoline scaffold was inserted into a large S2 pocket

and the P1-imidazole was occupied into the S1 pocket as
www.drugdiscoverytoday.com 679
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FIGURE 10

Structure of 3CLpro inhibitors (66-74).
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expected. The study was extended to find out the novel inhi-

bitors that interact at S3 to S4 site [119]. For this reason, a non-

prime site substituent and warheads combined with the deca-

hydroisonoline was designed and evaluated against SARS-CoV

3CLpro. The resulting analogs have Ac-Thr-Gly-OH (compound

81, Fig. 11), instead of an original Ac-Thr-Val sequence in 75,

since an isopropyl side chain of the Val in 75 is directed to an

outward of SARS 3CLpro and no interactions with SARS 3CLpro at

the Val site is detected. Indeed the compound showed about 2.4

times potent inhibitory activities for SARS 3CLpro when com-

bined with a non-prime site substituent. This finding indicated

not only the expected additional interactions with the SARS

3CLpro but also the possibility of new inhibitors containing a

fused-ring system as a hydrophobic scaffold and a new warhead

such as thioacetal.

It was reported that mature SARS 3CL protease is subject to

degradation at the188Arg/189Gln site [120]. Therefore, R188I
680 www.drugdiscoverytoday.com
mutant protease with high activity and stability was prepared.

Kenichi et al were involved in developing inhibitors SARS 3CL

R188I mutant protease. As a result, the compound 75 was devel-

oped with an IC50 value of 98 nM [118]. However, due to problems

like enzymatic digestions of peptide chains and a-proton racemi-

zation, these compounds are not further taken forward. To solve

this problem, they designed another derivative Sk23 (82, Fig. 11)

[121] with serine backbone against the mutant protease. The

compound Sk23 (Fig. 11) showed a weak inhibitory activity. In

a way to develop small molecule inhibitors, they further investi-

gated the structural modifications on the inhibitor SK23 and

found isoserine backbone could be an alternative to the serine

[122].One of the resulting analog SK40 (83, Fig. 11) showed an IC50

value 43 mM against the mutant protease. The compound further

characterized for its microbial and cytotoxicity activities. Howev-

er, it did not show inhibitory activities for any screened microbials

and no cytotoxicity.
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FIGURE 11

Non-peptide SARS-CoV 3CLpro inhibitors contain P2-decahydroisoquinoline, serine and isoserine scaffolds.
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Groutas et al. reported the novel class of peptidomimetic MERS-

CoV3CLpro inhibitors that embody a piperidine moiety [116].

These inhibitors were designed based on the dipeptidyl aldehyde

bisulfite adduct inhibitor, designated GC376 (84, Fig. 12), which

was clinically demonstrated for its efficacy. Attachment of the
piperidine moiety to a dipeptidyl component permits the resultant

hybrid inhibitor to engage in favorable binding interactions with

the S3and S4 subsites of the enzyme. Some of these peptidomi-

metics showed excellent inhibition of MERS-CoV as well as the

SARS-CoV infections (see, for example, compounds 85,86,
www.drugdiscoverytoday.com 681
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FIGURE 12

Dipeptidyl aldehyde bisulfite adduct inhibitors (84-86), replicase (87) and RNA synthesis inhibitors (88).
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Fig. 12). Compounds 85 and 86 displayed potent inhibition

toward MERS-CoV in both enzyme and cell-based systems, with

low cytotoxicity (CC50>100 mM).

Replicase inhibitors
Helicases are ubiquitous proteins that are required for a wide range

of biological processes, such as genome replication, recombina-

tion, displacement of proteins bound to NAs and chromatin

remodeling. Helicase (nsP13) protein is a critical component,

required for virus replication in host cells, and thus may serve

as a feasible target for anti-MERS and anti-SARS chemical therapies.

Recently, Adedeji et al. [123,124] reported a small 1,2,4-triazole

derivative 87 (SSYA10-001, see Fig. 12) that inhibited the viral

NTPase/helicase (known as nonstructural protein 13, nsp13) of

both SARS-and MERS-CoVs. The antiviral activity of 87 inhibits

MERS-CoV and SARS-CoV replication with EC50 values of 25 mM

and 7 mM, respectively, and no significant cytotoxicity was ob-

served up to the concentration of 500 mM. There have been, so

far, no helicase inhibitors approved antiviral therapy and thus
682 www.drugdiscoverytoday.com
compound 87 could serve as a potential lead for the development

of effective broad-spectrum anti-coronavirus drugs.

Membrane-bound viral RNA synthesis inhibitors
Like all RNA viruses, coronaviruses employ host cells membranes

to assemble the viral replicase complex. This evolutionary con-

served strategy provides a compartment for viral RNA synthesis, a

crucial step in the coronavirus life cycle. Antiviral agents that

target membrane-bound coronaviral RNA synthesis is important

for the replication and therefore, represent a novel and attractive

target. Lundin A. et al. [125] discovered an inhibitor, designated

K22 (88,Fig. 12) that targets membrane-bound coronaviral RNA

synthesis and showed potent antiviral activity of MERS-CoV in-

fection with remarkable efficacy [126].

Host-based anti-CoV treatment options
The host innate interferon response is crucial for the control of viral

replication after infection [127]. Although CoVs can suppress the

interferon response for immune evasion, they remain susceptible to
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interferon treatment in vitro [128,129]. The interferon response can

be augmented by the administration of recombinant interferons or

interferon inducers. Recombinant interferon- a and interferon- b
inhibit the replication of both SARS-CoV and MERS-CoV in vitro and

animal models [84,130–135]. Various combinations of interferon- a
or-b with other antivirals such as ribavirin and/or lopinavir-ritona-

vir have been used to treat patients with SARS or MERS. Overall,

combination treatments consisting of interferons and ribavirin did

not consistently improve outcomes [47–49,136,137]. The apparent

discrepancy between in vitro findings and in vivo outcomes may be

related to the high EC50/Cmax ratios of these drugs and the delay

between symptom onset and drug administration [83,138].

This delay is especially relevant for MERS patients, as they have a

much shorter median time interval between symptom onset and

death than do SARS patients [139,42]. The use of recombinant

interferon b-1b, which has the lowest EC50/Cmaxratio against

MERS-CoV among tested preparations of recombinant interferons,

should be evaluated in combination with other effective antivirals

in clinical trials at early stages of the infection [83,84].

Nitazoxanide (89, Fig. 13) is another potent type I interferon

inducer that has been used in humans for parasitic infections

[132]. A synthetic nitrothiazolyl–salicylamide derivative exhibits

broad-spectrum antiviral activities against both RNA and DNA

viruses including canine CoV, influenza viruses, HBV, HCV,

HIV, rotavirus, norovirus, and flaviviruses [132]. It has been eval-
FIGURE 13

Representative host-based anti-Coviral drugs for CoV infections.
uated in Phase II and Phase III clinical trials for the treatment of

HCV infection and influenza and has a good safety profile

[132,140,141].

In addition to direct potentiation of the interferon response,

other cell signaling pathways have been identified as potential

anti-CoV treatment targets. Cyclophilins interact with SARS-CoV

nsp1 to modulate the calcineurin pathway, which is important in

the T cell-mediated adaptive immune response [142]. The calci-

neurin inhibitor cyclosporine (90, Fig. 13) inhibits a broad range of

CoVs in vitro [142–144]. However, its immunosuppressive effects

and high EC50/Cmax ratio at standard therapeutic dosages limit its

clinical application.

Trametinib (91), selumetinib (92), everolimus, rapamycin,

dasatinib, and imatinib are examples of inhibitors of kinase sig-

naling pathways, which are active against SARS-CoV and MERS-

CoV (see, for representative example 91, 92 in Fig. 13). Their

mechanism of action is to block the ABL1, ERK-MAPK and/or PI3K-

AKT-mTOR pathways, which may block early viral entry and/or

postentry events. However, the major drawback of the inhibitors

may be associated with immunopathology [145,146].

CoVs utilize specific host factors for virus entry and replication.

Specific monoclonal or polyclonal antibodies, peptides or func-

tional inhibitors can target the host receptor. For example, anti-

DPP4 mAbs inhibit MERS-CoV cell entry in vitro [147]. For

the treatment of SARS-CoV, small-molecule entry inhibitors such
Drug Discovery Today 

www.drugdiscoverytoday.com 683



REVIEWS Drug Discovery Today �Volume 25, Number 4 �April 2020

Review
s
�K

EY
N
O
TE

R
EV

IEW
as N-(2-aminoethyl)-1-aziridineethanamine (93, NAAE) inhibit

the catalytic activity of ACE2 and SARS-CoV S-mediated cell-cell

fusion in vitro [148].

Neurotransmitter inhibitors including chlorpromazine (8),

fluphenazine (29), and promethazine (30), were reported to

inhibit cell-cell fusion in a moderate level with EC50 values of

about 23, 15, and 17 mM, respectively [81]. Additionally, they

disrupt clathrin-mediated endocytosis to inhibit MERS-CoV [81].

An HIV entry inhibitor targeting gp41 (94, ADS-J1, Fig. 13) could

inhibit more than 90% of MERS-CoV pseudovirus infection in

NBL-7 and Huh-7 cells by interrupting the entry of pseudotyped

MERS-CoV with an EC50 of 0.6 mM in the DPP4-expressing cell

line and with a CC50 of 26.9 mM in NBL-7 and Huh-7 cells by MTT

assay [81].

The entry of CoVs into host cells via the endosomal and/or cell

surface pathways is facilitated by host proteases that cleave and

activate S protein. Cathepsins are cysteine proteases that are in-

volved in the endosomal pathway and can be inhibited by cathepsin

inhibitors such as K11777 (95) and its related vinyl sulfone analogs

[149]. These compounds seem to be safe and effective against various

parasitic infections in animal models and have broad-spectrum

activities against enveloped RNA viruses such as CoVs (SARS-CoV,

MERS-CoV, HCoV-229E, and HCoV-NL63), filoviruses (Ebola and

Marburg viruses) and paramyxoviruses [149–152].

Ouabain (96) and bufalin (97) (Fig. 13) can inhibit MERS-CoV

entry by blocking clathrin-mediated endocytosis [153]. Dihydro-

tanshinone (98, Fig. 13), a lipophilic compound, showed a deci-

mal reduction at 0.5 mg/mL and excellent antiviral effects at

�2 mg/mL with a reduction in titer from 6.5 Log to 1.8 Log

TCID50/mL by using a pseudovirus expressing MERS-CoV spike

protein [154]. During the biosynthesis of MERS-CoV S protein, the

furin inhibitor decanoyl-RVKR-chloromethylketone (dec-RVKR-

CMK, 99, Fig. 13) at 75 mM can lead to a decrease of the 85-

kDa cleaved product in MERS-CoV S wt and S20 mutant [155].

Recently some small molecules were discovered and character-

ized as inhibitors of SARS-CoV replication that block viral entry by

three different mechanisms [156]. (i) compound 100 (SSAA09E2)

acts through a novel mechanism of action, by blocking early

interactions of SARS-S with the receptor for SARS-CoV, angioten-

sin-converting enzyme 2 (ACE2); (ii) Compound 101 (SSAA09E1)

acts later, by blocking cathepsin L, a host protease required for

processing of SARS-S during viral entry; and (iii) compound 102

(SSAA09E3) also acts later and does not affect interactions of SARS-

S with ACE2 or the enzymatic functions of cathepsin L but pre-

vents fusion of the viral membrane with the host cellular mem-

brane. Naphthalene sulfonamide derivative 103 a selective

clathrin inhibitor targeting its amino-terminal domain, and tetra-

decyltrimethylammonium bromide (MiTMAB), a dynamin I and II

GTPase inhibitor were reported to inhibit the HCoV-NL63 repli-

cation by inhibiting the clathrin-mediated entry [157]. Important-

ly, no cytotoxic effect was observed for the tested inhibitors

applied to LLC-Mk2 cells.

HCoV-OC43 remains incessantly one of the most important

etiological factors for respiratory tract diseases in humans. Recent-

ly, it was found that HCoV-OC43 employs caveolin-1 dependent

endocytosis for the entry [158]. Subsequently, cholesterol-binding

or depleting agents such as nystatin (104, Fig. 13) or methyl-

b-cyclodextrin (MbCD) (105, Fig. 13) were reported to inhibit the
684 www.drugdiscoverytoday.com
virus replication via an aveolin-1 caveolin-1 dependent endocyto-

sis entry.

Another class of anti-CoV agents that target S to inhibit CoV

entry is the carbohydrate-binding agents. Griffithsin is an anti-

viral protein originally isolated from the red alga Griffithsia spp.

[159]. It binds specifically to oligosaccharides on viral surface

glycoproteins such as S and HIV glycoprotein and inhibits a broad

range of CoVs, including SARS-CoV, HCoV-229E, HCoV-OC43

and HCoV-NL63 in vitro and SARS-CoV-infected mice [159,160].

The optimal delivery modes and safety profiles of these agents in

humans should be further evaluated.

Alternatively, an increasing number of agents that target specific

binding sites or functions of these proteins are being generated

through crystallography and functional assays. Examples include

the viroporin inhibitor hexamethylene amiloride (6, Fig. 1), which

reduces the ion channel activity of E in SARS-CoV and HCoV-229E,

and compound 106 (PJ34, Fig. 13), which binds to a distinct ribo-

nucleotide-binding pocket at the N-terminal domain of N in HCoV-

OC43 [161–163]. However, these agents are likely to exhibit a

narrow-spectrum as the binding sites and functions of these proteins

are unique to individual CoVs. Novel lipophilic thiazolidine deri-

vatives, such as 107 (LJ001, Fig. 13 and 108 (JL103, Fig. 13), are

membrane-binding photosensitizers that produce singlet oxygen

molecules to induce changes in the properties of lipid membranes

and prevent fusion between viral and target cell membranes. They

exhibit broad-spectrum activities against numerous enveloped vi-

ruses and may be active against CoVs [164–167]. In addition to the

above-mentioned molecules, there are numerous peptide-based

inhibitors of coronaviruses [168].

Several nucleic acid synthesis inhibitors have broad-spectrum

activity against SARS-CoV and MERS-CoV viruses. Inosine mono-

phosphate dehydrogenase (IMPDH) inhibitors such as ribavirin

and mycophenolic acid inhibit an important step in de novo

synthesis of nucleic acids (discussed earlier). Mizoribine, another

IMPDH also proved to inhibit the synthesis of nucleic acids.

Mizoribine (109, Fig. 14), an approved immunosuppressant in

organ transplantation with limited adverse side effects, has shown

in vitro activity against HCV and bovine viral diarrhea virus (BVDV)

and was considered as an alternative to ribavirin/IFN combina-

tions for treatment of HCV infections [169] Mizoribine exerts its

activity through selective inhibition of inosine monophosphate

synthetase and guanosine monophosphate synthetase, resulting

in the complete inhibition of guanine nucleotide synthesis with-

out incorporation into nucleotides. The chemotherapeutic gem-

citabine has shown in vitro activity against MERS-CoV and SARS-

CoV (discussed earlier). Remdesivir (development code GS-5734,

or 110, Fig. 12) is an antiviral drug, a novel nucleotide analog

prodrug. It was developed by Gilead Sciences as a treatment for

Ebola virus disease and Marburg virus infections, though it has

subsequently also been found to show reasonable antiviral activity

against more distantly related viruses such as respiratory syncytial

virus, Junin virus, Lassa fever virus, and MERS-coronavirus [170].

Remdesivir was rapidly pushed through clinical trials due to the

2013–2016 West African Ebola virus epidemic crisis, eventually

being used in at least one human patient despite its early devel-

opment stage at the time. Preliminary results were promising and

it was used in the emergency setting for the 2018 Kivu Ebola

outbreak along with further clinical trials.
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FIGURE 14

Nucleic acid synthesis inhibitors.
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In vitro, remdesivir showed potent antiviral activity against both

Malaysian and Bangladesh genotypes of Nipah virus and reduced

replication of Nipah virus Malaysia in primary human lung micro-

vascular endothelial cells by more than four orders of magnitude,

warranting further testing of the efficacy of remdesivir against Nipah

virus infection in vivo. In contrast, to control animals, which all

succumbed to the infection, all remdesivir-treated animals survived

the lethal challenge, indicating that remdesivir represents a prom-

ising antiviral treatment for Nipah virus infection also [171].

Conclusions
Human coronaviruses utilizes host cellular components to achieve

various physiological processes, including viral entry, genomic

replication, and the assembly and budding of virions, thereby

resulting in pathological damage to the host. Therefore, interrupt-

ing any stages of the viral life cycle would become a potential

therapeutic target for developing antiviral therapies. Although

numerous anti-human coronaviral agents have been identified

through various approaches, no specific treatment is currently

available for HCoVs, to date. One of the main reasons for that

is most of the identified agents were not properly evaluated for in

vitro and in vivo studies.
Our increasing understanding of novel emerging coronaviruses

will be accompanied by increasing opportunities for the reason-

able design of therapeutics. Importantly, understanding this basic

information about coronavirus protease targets will not only aid

the public health against SARS-CoV and MERS-CoV but also help

in advance to target new coronaviruses that may emerge in the

future.

In spite of huge efforts taken by both academia and pharma-

ceutical industries, no coronavirus protease inhibitor has yet

successfully been marketed.
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