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Virtualizing the design process of new materials offers 
great prospects to accelerate technological innovation1–3. 
However, the process of virtual materials screening and 

design depends on the availability of fast and accurate modelling 
techniques that reliably predict materials properties at realistic 
operating conditions. Widely used materials simulation methods 
include highly accurate but computationally demanding ab initio 
methods4,5, and fast classical force field-based methods6–8 that are 
often limited in their applicability (notably due to fixed covalent 
topology) and accuracy9,10 as illustrated in Fig. 1. Machine-learned 
(ML) potentials constitute a promising approach to solve compu-
tationally challenging problems in materials sciences (for example, 
the simulation of enzymes, chemical reactions or complex materials 
and interfaces as depicted in the inset in Fig. 1) that were previ-
ously neither accessible by classical force fields nor by computa-
tionally demanding ab initio molecular dynamics (MD) methods. 
Behler and Parrinello pioneered the systematic development of ML 
potentials11,12, while the idea of fitting force field parameters using 
ab initio data dates back to earlier work13–17. More recent break-
throughs in constructing highly accurate ML potentials for organic 
molecules18–20 as well as for disordered and crystalline materials21–23 
demonstrate that ML potentials have the capability to initiate a  
paradigm shift in materials modelling and design.

In this Review, we outline some commonly used approaches to 
train ML potentials, including promising recent developments and 
successful examples of applications. We then propose and discuss 
auspicious avenues for future developments that have the potential 
to enable predictive large-scale materials simulations far beyond the 
scope of currently available classical and ab initio approaches. We 
will in particular discuss how hybrid machine learning/molecular 
mechanics (ML/MM) methods will help to approach substantially 
larger systems24–26 and longer time scales27 than currently accessible 
with state-of-the-art methods (Fig. 1). We will furthermore outline 
developments required to make ML potentials robust and widely 
applicable tools, similar to today’s classical force fields or density 
functional theory-based MD simulations. Finally, we will provide 

our perspective for ML potentials to become a method capable of 
reliably describing complex systems on an atomistic level, including 
realistic environmental conditions. As such, ML potentials will be 
an essential step towards fully computational materials design.

Overview of the history of and recent progress in  
ML potentials
The origin of ML potentials is based on the idea to use ab initio 
data to fit free parameters in classical force fields and analytical 
interatomic interaction potentials, dating back to work by Ercolessi 
and Adam in 1992 who found that an “extensive data set overcomes 
the difficulties encountered by traditional fitting approaches when 
using rich and complex analytic forms, allowing to construct poten-
tials with a degree of accuracy comparable to that obtained by ab 
initio methods”15,28. In 1995, Blank et al. proposed the use of gen-
erally applicable neural networks instead of predefined analytical 
functions14. Lorenz et al. continued to use neural networks to fit 
intermolecular interaction energies29. In 2007, Behler and Parrinello 
introduced high-dimensional symmetry functions as a generalized, 
system-size-independent approach to represent atomistic configu-
rations: “a NN [neural network] optimized for a certain number of 
degrees of freedom, i.e., number of atoms, cannot be used to predict 
energies for a different system size”. Thus, they suggested the use 
of symmetry functions to “describe the energetically relevant local 
environment of each atom and are subsequently used as input for 
the NN”11.

While computational power30–32, ML models19,33 and architec-
tures34–36, as well as the amount of available ab initio training data37–39, 
have substantially increased during the past 25 years, the challenges 
addressed in these early works remain part of current research19,40. 
The need for large amounts of accurate training data, informative 
representations that are independent of the system size, and accu-
rate ML models remain topics of high interest and active research. 
Even topics that recently gained increased interest—such as uncer-
tainty quantification41, as well as active learning approaches42 to 
dynamically generate training data—often date back to early work, 
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for example, by Brown et al. in 1996: “The calculation of error sur-
faces for interpolants is also useful since it provides an easily inter-
pretable guide to where in the input space the network is uncertain 
about the interpolant. This allows the choice of subsequent training 
data to be altered accordingly”43.

Although many of the fundamental concepts in the field of ML 
potentials were conceived and described in the literature more 
than 15 years ago, the computational tools and power for exten-
sive data generation and analysis, as well as the efficient training 
and application of machine learning models, only recently enabled 
ground-breaking successes with mature technologies. This initi-
ated the development of a large variety of promising methods to 
train and apply ML potentials. In this work, we will introduce basic 
concepts of popular methods to construct ML potentials, notably 
neural networks and kernel-based regression models, and illustrate 
how they can be used to predict energies and forces in atomically 
resolved systems (see the ‘Machine learning models and system 
representations’ section). All machine learning methods require 
data to be trained, with deep neural networks typically requiring 
large amounts19. We therefore discuss promising recent approaches 
of large scale data acquisition (see the ‘Data acquisition’ section). 
Many ML methods do not necessarily generalize well to data 
points far beyond the training data, which can limit the reliability 
of machine learning-based simulations. Uncertainty quantification 
and active learning approaches (see the ‘Uncertainty quantification 

and active learning’ section) alleviate this problem by enabling auto-
mated model correction and prediction accuracy improvement via 
selective training data acquisition. We will finally highlight applica-
tions of ML potentials to study both organic and inorganic materials 
(see the ‘Applications’ section).

Machine learning models and system representations. In the fol-
lowing, we will introduce the main challenges of applying machine 
learning models to atomistically resolved systems, and present solu-
tions in the form of neural network- and kernel-based machine 
learning models, along with widely used system representations.

The challenge. Machine learning models are capable of build-
ing mathematical models for pattern identification and inference 
on numerically represented data. ML potentials are specifically 
designed to find a mapping between a three-dimensional configu-
ration of an arbitrary number of atoms representing a material of 
interest and its corresponding conformational energy. One of the 
biggest challenges in designing ML potentials is the identification of 
a suitable numerical representation of the material. This challenge 
is two-fold: materials systems of arbitrary size (number of atoms N) 
have to be represented by vectors of fixed dimension44,45 while the 
complete information about the three-dimensional configuration 
(generally 3N – 6 rotationally and translationally invariant inter-
nal degrees of freedom) has to be encoded in this vector. Further 
constraints on the representation can be posed by additional sym-
metries of the system such as periodicity in the case of crystalline 
materials46,47. The choice of regression model used for the prediction 
of properties (energies and gradients) is typically tightly connected 
to the choice of representation.

Many successful examples of ML methods applied to ques-
tions in materials sciences and chemistry only require a solution 
to one of the two challenges. Properties of molecular equilibrium 
structures48,49 can be accurately predicted without accounting for 
all conformational degrees of freedom while molecule-specific 
approaches39,50–52 do not need to account for variations in the system 
size. In the following section, we will give a non-exhaustive over-
view of a selection of representations and corresponding regression 
models that address both of these challenges and thus constitute 
promising candidates for future materials modelling and virtual 
materials design. Box 1 explains the basic principles of neural 
network- and kernel-based ML potentials and Box 2 summarizes 
state-of-the-art ML potentials and their respective representations 
and model architectures.

ML potentials based on neural networks. Neural networks consti-
tute a different class of machine learning algorithms that are loosely 
inspired by the human brain. Organized as a directed graph of train-
able units (neurons), neural networks can learn highly nonlinear 
relations between input data and output data. The machine learning 
models and system representations shown in Fig. 2a,b are designed 
to describe local contributions to the total energy of a system.

One of the most widely used approaches to generate input data 
for the training of neural network potentials is to define an infor-
mative representation of an atomic system of arbitrary size by using 
symmetry functions initially developed by Behler and Parrinello11,36. 
Instead of finding representations encoding molecules on a global 
scale, the symmetry functions describe the local chemical and geo-
metrical environment of every single atom independently (see Fig. 2a  
and Box 1). While being inherently translationally invariant, the 
symmetry functions are defined in a rotationally invariant man-
ner53. The total energy of an N-atom system is predicted by sum-
ming up the energy contributions of every single atom predicted 
by element-type specific machine learning models (Fig. 2b)11,18,40,54, 
leading to a linear scaling of the computational cost with the  
system size55.
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Fig. 1 | simulation methods. ML potentials as a potential solution to the 
trade-off between cost and accuracy of conventional atomistic simulations. 
Potential future developments include hybrid machine learning/molecular 
mechanics (ML/MM) methods, more efficient representations to 
decrease simulation times and more accurate training data (proposed 
by an active learning algorithm) to improve the model accuracy beyond 
density functional theory. Potential future applications are shown in the 
blue box (only approximately positioned according to their system-size 
and accuracy requirements). They include the simulation of enzymes and 
biomolecules such as ribosomes, the quantitative simulation of chemical 
reactions and reaction networks as well as the atomistic simulation of 
complex reactive materials as found in, for example, Li-ion batteries. 
The inset on the top left shows the energy landscape of a protein folding 
simulation, which is a prototypical example of a classical force field 
calculation. No covalent bonds are formed or broken during the simulation. 
The inset on the right shows an excited state dynamics simulation of a S1 
to S0 transition, which requires ab initio methods to compute the excited 
state properties. The ‘Coarse graining’, ‘Reactive force fields’, and ‘QM/
MM’ boxes are faded out as these methods are not discussed in depth. 
Figure adapted with permission from: Marat Yusupov, Roland Beckmann 
and Anthony Schuller (biology image); ref. 24, American Chemical Society 
(chemistry image); ref. 25, Elsevier (materials image); ref. 26, PNAS (left 
inset); ref. 27, AIP (right inset).
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Even though most neural network potentials focus on short-range 
interactions, long-range interactions pose a major computational 
challenge in classical MD simulations, where long-range electro-
static interactions are calculated using static point charges that are 
assigned pre-specified points within molecules, typically to each 

atom position. To improve this description56, machine learning can 
be used to predict environment-dependent point charges or molec-
ular dipole/multipole moments57–59. The neural network-based 
TensorMol model34 combines local atomic energy contributions 
with long-range electrostatics as well as van der Waals energies60 
to improve the prediction of potential energy surfaces and enable 
the simulation of large systems (Box 2). Point charges and multi-
pole moments can furthermore be used to computationally predict 
infrared spectra and weak intermolecular interaction energies in 
organic crystals61–63.

A rather novel route to machine learning-based atomistic poten-
tials in general and long range-corrected potentials in particular has 
been proposed by Bereau and colleagues64. Instead of employing 
neural networks (or other machine learning models) to construct 
atomistic potentials, they adhere to the idea of using physics-based 
potentials. All local, environment-dependent atomic properties of 
these potentials (for example, electrostatic multipole coefficients or 
polarizabilities), however, are machine-learned. These data-driven 
intermolecular potentials from a combination of physics- and 
machine learning-based models (IPMLs) enable the accurate cal-
culation of noncovalent interactions including many-body disper-
sion. They were shown to be transferable across conformational 
and chemical space (hydrogen, carbon, nitrogen and oxygen atoms) 
without explicit prior parametrization.

ML potentials based on kernel methods. One widely used group of 
regression models for ML potentials are kernel-based methods47,65,66, 
in particular Gaussian processes (GPs; see Fig. 2c and Box 1)67–71. 
Kernel methods constitute machine learning algorithms typically 
used for pattern recognition. They use the ‘kernel trick’ to express 
similarity in potentially higher-dimensional spaces (using inner 
products) derived from the set of input features to identify nonlin-
ear decision boundaries with linear learning algorithms. They are 
typically easier to train and have fewer hyperparameters than (deep) 
neural networks. However, training time and prediction time scale 
with M3 and M2, respectively, with M being the number of training 
samples, as opposed to the more favourable scaling of neural network 
models that were explained in more detail earlier. This adverse com-
putational scaling presents an obstacle to covering large amounts of 
training data and diverse parts of chemical space with a single GP. 
Sparse GP models reduce this unfavourable scaling to MX2, with 
X being the number of inducing points that have to be selected in 
advance, balancing the reduction in computational demand with a 
loss in accuracy72,73. A widely used regression model, in particular 
for inorganic materials, is the smooth overlap of atomic positions 
(SOAP) kernel74 to train the Gaussian approximation potential 
(GAP)68,75. The SOAP-GAP model and similar methods76 can fur-
thermore be used to compare environment-embedded atoms in 
molecules and solids76,77 as well as to predict molecular properties78.

Discussion. Symmetry functions-based representations are typically 
high-dimensional, which increases the number of parameters as 
well as the training and prediction times of the associated regression 
models. Dimensionality reduction of the representation by system-
atic selection of features (individual dimensions of the representa-
tion) can reduce training and simulation time substantially. Feature 
selection methods range from simple approaches employing the 
Pearson correlation coefficient as selection criterion79 to more 
advanced techniques such as CUR decomposition80, a modified ver-
sion of farthest-point sampling, or automatic relevance determina-
tion81, a Bayesian method that estimates the relevance of features by 
optimizing the marginal likelihood of the underlying model. Some 
of these methods can also be used to reduce the number of train-
ing points, which is of crucial importance to accelerate the train-
ing and evaluation of kernel-based methods. Further methods to  
systematically reduce the required training set size are based on 

Box 1 | Neural network potentials and kernel methods

Neural network-based potentials predict the total energies of mol-
ecules using a summation of the predictions of multiple neural 
networks for each atom in the molecule. Each neural network is 
trained on representations of the local environment of an atom, 
called symmetry functions11,18,36,40. Separate element-specific neu-
ral networks are trained, each consisting of multiple fully con-
nected layers that typically decrease in size from the input layer to 
the final prediction.

Kernel-based models such as Gaussian processes predict the 
expected value of the energy of a new data point x*, that is, a new 
conformation or molecule as a linear combination of coefficients 
α = (K + σn

2I)–1y, with covariance matrix K with Kij = k(xi, xj), 
training points xi, target vector y (here, its elements are energies, 
Ei) and kernel function k(x, x*)152. The SOAP kernel74 provides 
a computationally efficient similarity measure between local 
atomic environments. It integrates over the local environment 
of two different atoms, where each atom in the environment is 
represented as a Gaussian. Two integrations are performed, one 
over space to obtain the overlap between the two environments 
and one over all rotations of the local environment to make the 
kernel rotationally invariant.

x1,E1

x4,E4
α4k(x4,x*)α1k(x1,x*)α1k(x1,x*)

α2k(x2,x*)

α3k(x3,x*) α5k(x5,x*)

x4,?

x5,E5

x2,E2

x3,E3

EΣ

Kernel-based potentials. The energy is predicted by using a kernel 
function to compare to all other training samples and to interpolate the 
energy as a weighted sum of contributions of all known data points.

Water

Oxygen

Hydrogen

Hydrogen

E1

E2E2 EΣ

E3

Neural network-based potentials. The system is split into single atom 
environments for which element-specific neural networks predict 
energies that are summed up to the total energy of the system.
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Apart from a random sampling of the configuration space (Fig. 3a),  
one of the most straightforward but not necessarily the most effi-
cient approach is the extraction of data from existing ab initio MD 
trajectories (Fig. 3b)45. Structural resemblance of consecutive time-
frames, as well as long-time correlations, will yield an unbalanced 
dataset that primarily samples from selected parts of the conforma-
tional space while many (high-energy) conformations and discon-
nected local minima are never observed. However, the procedure 
can be partially improved by sampling from trajectories at higher 
temperatures to enhance coverage of high-energy conformations 
during the simulation45.

The approach of data acquisition described by Smith et al. for 
the training of the ANI118,37 model consists of a three-step process. 
In the first step, equilibrium geometries of a large number of small 
molecules are obtained using density functional theory (DFT)-based 
geometry optimizations. In the second step, eigenmodes are calcu-
lated and the equilibrium conformations are distorted along linear 
combinations of the eigenmodes, scaled with temperature- and 
frequency-dependent factors. In the last step, the energies of all con-
formers are evaluated using DFT calculations (Fig. 3c). Using this 
procedure, about 22 million conformers of 57,000 molecules were 
generated and used to train the ANI1 potential34,37.

Kernel-based methods—often used to model inorganic systems 
with one or a few different elements68,75,86—can achieve high accu-
racies when trained on only a few thousand data points. Deringer 
et al. and other groups developed schemes that start without any 
prior knowledge of the system by running ab initio calculations on 
simulation boxes with randomly distributed atoms. Active learning 

active learning strategies and will be discussed in the ‘Uncertainty 
quantification and active learning’ section.

It was shown that the incorporation of forces acting on each 
atom (gradients of the potential energy surface) in addition to ener-
gies in the learning process can increase the accuracy of models by 
reducing artefacts due to inconsistencies of energies and gradients34. 
One example of an intrinsically energy-conserving method is the 
(symmetric) gradient domain machine learning ((s)GDML) tech-
nique39,82. GDML is a kernel-based method that directly predicts the 
forces acting on each atom. Using a molecule-specific representa-
tion, it has to be re-parameterized for each new molecular species. 
However, it already reaches high accuracy when trained on a rela-
tively small number of data points.

Data acquisition. Supervised machine learning models for ML 
potentials require training data that generally consists of the coordi-
nates and elements of all atoms in a molecule or unit cell and their 
corresponding energies and forces. ML potentials target the accu-
rate prediction of energies and forces for arbitrary conformations 
of atoms that are sampled during an MD simulation. In contrast 
to many other machine learning tasks in materials and molecular 
sciences49,83–85, off-equilibrium conformations are therefore of cru-
cial importance when training ML potentials. Multiple approaches 
to systematically generate a diverse set of off-equilibrium confor-
mations are described in the literature, some of which are outlined 
in detail in this section. Afterwards, attempts to systematically 
reduce the amount of data required to train models to a given target  
accuracy will be discussed.

Box 2 | state of the art ML potentials

Three recently developed approaches to predict total energies 
of molecules with arbitrary size and geometry are the deep ten-
sor neural network (DTNN)38,153, the closely related SchNet ap-
proach151 and the hierarchically interacting particle neural net-
work (HIP-NN) model35,154. These models represent each atom as 
a vector of fixed size, initially encoding only its atomic number. 
The representation vectors are propagated through the model in 
a sequence of on-site and interaction layers. On-site layers are 
fully connected neural network layers, while the interaction layers  
combine the representations of all atoms using distance-dependent, 
nonlinear transformations. The total energy is obtained by sum-
ming over atomic energy contributions, each of which is com-
puted from the respective atom representation based on linear  

regression. In the case of HIP-NN, this procedure is repeated  
several times at different depths of the entire model, leading to a 
hierarchy of energy contributions at different effective interaction 
distances.

Long-range electrostatics and van der Waals corrections can 
be modelled explicitly and added to the energy. In the TensorMol 
model34, for example, neural networks are trained to predict point 
charges qi of molecules that reproduce the dipole moment d of the 
molecules. In a second step, the Coulomb interaction EC between 
these point charges and van der Waals energy EvdW are calculated 
and neural networks are trained that predict the short-range 
energy contribution Esr in a way that all three energy terms sum 
up to the total energy E of the system.

On-site Interaction
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E l
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interaction networks. Representations are propagated through the neural 
network and energies are predicted as sums of single-atom energies at 
multiple depths of the model.
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Long-range interactions. Local interaction energies are predicted by the 
neural network directly, while long-range interactions are modelled using 
physics-based Coulomb interactions based on partial charges predicted by 
the neural network as well as parameterized van der Waals interactions.
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procedures as described in the next section are used to refine the 
dataset by iterating between model training, MD simulation and 
systematic acquisition of further ab initio data points21,87–89.

Uncertainty quantification and active learning. Rendering mate-
rials design a successful endeavour requires transferable machine 
learning models. To achieve this goal, the training set must repre-
sent the important features of the problem-specific configuration/
compound space (application domain), which usually is unknown 
at the outset. Hence, in an optimal learning process, training data 
would be generated successively (Fig. 4a). While the accuracy of 
data-driven models can be (most often) improved by increasing the 
amount of training data, their complex, time-consuming and/or 
expensive generation constitutes a major bottleneck. This limitation 
incentivizes the generation of informative training sets that contain 
a minimum number of examples to achieve a predefined accuracy 

on a given application domain. In active learning approaches42, 
predictions inferred from a given training set are harnessed to 
determine a minimal set of new systems (for example, molecular 
configurations) for which target values (labels) are required. The 
training set will be extended by these new labelled data points on 
the fly to optimally improve the underlying prediction model for 
those systems that are not yet contained in the training set. Active 
learning is particularly applicable to data-extensive scenarios such 
as chemical-space exploration or MD simulations, which yield con-
stant data streams.

A simple but effective data selection algorithm was proposed by 
Botu and Ramprasad90. They used the Euclidean distance between 
configurational fingerprints to actively learn energies and forces for 
MD simulations of bulk aluminium and aluminium surfaces. If the 
inter-configurational distance was too large, electronic-structure 
calculations were performed to update the ML force field. The 
more sophisticated ‘query by committee’ algorithm42 (Fig. 4b) was 
applied first in the context of ML potentials by Behler36, although 
Smith et al.91 were the first to introduce the term to the commu-
nity. Herein, a committee (ensemble) of neural-network models 
with different architectures but comparable average performance is 
selected. One member of the committee is employed as a force field 
in an MD simulation. While the simulation is executed, each com-
mittee member predicts the potential energy of every configuration 
along the resulting trajectory. If a large disagreement between the 
committee members is detected—indicated by a high prediction 
variance—the corresponding configuration will be subjected to an 
electronic-structure calculation. The resulting labelled data point is 
then used to update the committee models.

While query by committee methods require training of multiple 
models to estimate the prediction variance for a molecular configu-
ration, the same can be achieved by a single model with built-in 
uncertainty quantification (such as Bayesian neural networks or 
GPs), possibly leading to substantial computational savings (Fig. 4c).  
In contrast to conventional neural networks, Bayesian neural net-
works incorporate distributions (instead of single values) of their 
weights and biases, which are propagated through the network to 
yield target values equipped with uncertainty measures (square root 
of the prediction variance)92. GPs go even beyond this idea and infer 
uncertainty from training data alone, that is, without the need to 
define any functions explicitly. Simm and Reiher24 used the predic-
tion variance of a GP to learn complex chemical reaction mecha-
nisms. Their active learning workflow is sequential, allowing for 
only one label (for example, an ab initio electronic energy) at a time 
to be generated. Proppe et al.93 extended this approach to enable the 
generation of multiple labels simultaneously, which offers a striking 
acceleration of matter simulations.

Instead of providing the active learner with a stream of unla-
belled data, it can be made even more active so as to synthesize/
propose unlabelled data itself. This approach is useful, for exam-
ple, to accelerate the exploration of potential energy surfaces by 
synthesizing representations of unseen configurations. To be use-
ful for materials science, one needs to ensure that the synthesized 
representations correspond to reasonable conformations, unit cells 
and so on. Variational autoencoders were developed in our lab for 
this purpose94. Similarity measures used in kernel-based regression 
models can further help to confine the search for new configura-
tions to regions that are vicinal to those that have already been 
sampled. Synthesizing unlabelled data is also appealing for optimi-
zation tasks. Instead of aiming at exploring the application domain 
evenly, the active learner can be made selective so as to focus on 
particularly interesting subdomains. For instance, identifying the 
local minima of a potential energy surface is of crucial importance. 
In this case, one could introduce a heuristic that rewards synthesiz-
ing representations that correspond to supposedly low-energy con-
figurations. Bayesian optimization is closely related to this approach 
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Fig. 2 | representation and models. a, The challenge of finding a 
fixed-size representation of a system of arbitrary size can be solved using 
representations of atom centred local chemical environments. b, Neural 
network-based ML potentials are trained by optimizing the parameters 
given the training data (multiple conformations of multiple molecules 
and corresponding energies E). Predictions are done using a fixed set of 
parameters. In Behler et al.11 and Smith et al.18, different neural networks 
are trained for the chemical elements. The total energy E of a system is 
computed as the sum of the neural network predictions for each atom.  
c, Kernel-based methods predict the properties of a molecule by comparing 
its representation with the representations of all molecules in the training 
set. The kernel estimates the similarity between the molecules and uses it 
to weight the training labels (energies).

Review ARticle | INSIGHT
Review ARticle | INSIGHT
https://doi.org/10.1038/s41563-020-0777-6Review ARticle | INSIGHT NaTuRe MaTeRiaLs

NAture MAteriALs | VOL 20 | JUNE 2021 | 750–761 | www.nature.com/naturematerials754

https://doi.org/10.1038/s41563-020-0777-6
http://www.nature.com/naturematerials


INSIGHT | Review ARticleNaTuRe MaTeRiaLs

and has been successfully demonstrated for problems in chemistry 
including multi-objective formulations95,96.

Active learning approaches have furthermore been applied to 
accelerate chemical-space exploration (based on Thompson sam-
pling97), to identify suitable collective variables (based on rein-
forcement learning98), as well as for the prediction of molecular 
properties99 (for example, atomization energies, polarizabilities) and 
interatomic potentials100 (based on the D-optimality criterion).

Applications. The very generic mapping from an arbitrary 
three-dimensional configuration of atoms to energies and forces 

acting on each atom makes classical force fields, ab initio calcula-
tions and also ML potentials a versatile method to drive dynamics 
simulations of practically any material, ranging from small organic 
molecules and large biomolecules over disordered (gaseous, liquid 
or amorphous solid) materials to (complex) crystalline systems 
such as metal–organic frameworks. The development of ML poten-
tials that are as accurate and reliable but much faster than the ab 
initio calculations on which they were trained (Fig. 1), will enable 
atomistic simulations of large systems over large time scales and, 
thus, lead to a further boost in the endeavour of virtualizing materi-
als design. Multiple promising examples of successful applications 
of ML potentials to a variety of material classes exist, some of which 
are illustrated in Fig. 5. Most of them are based on the models and 
representations presented earlier.

Inorganic materials, both disordered and crystalline, offer a 
wide variety of open research questions, where ML potentials can 
be readily applied to better understand the mechanical properties 
of the materials, predict surface reconstruction and surface prop-
erties (Fig. 5a)101–103, simulate phase diagrams104, find new poly-
morphs or crystal structures (Fig. 5b)22,44,45,68,105, simulate the impact 
and propagation of lattice defects with atomistic resolution75,106, 
simulate nanoparticles (Fig. 5c)107, liquids52, or study properties of 
complex (for example, mixed organic–inorganic) systems such as 
metal–organic frameworks (Fig. 5d)108. The accuracy of ML poten-
tials combined with active learning approaches, in particular for 
high-energy configurations, enables the reliable simulation of vari-
ous phases of single-component materials such as carbon68,109, sili-
con78,87,104 or boron89, as well as more complex materials such as GeTe 
(ref. 110), GeSbTe (ref. 111) or CuAu (ref. 112). Multiple research groups 
in particular showed that the use of ML potentials for inorganic 
materials not only helps to better understand microscopic processes 
(for example, crack propagation, formation of polymorphs under 
certain conditions, and so on) but can enable the in silico discovery 
of unknown microstructures and polymorphs of materials, inter-
faces and nanoparticles.

While for many inorganic applications, material-specific 
machine learning models only need to describe the interaction 
between a small number of chemical elements, even the most basic 
ML potentials for organic materials need to cover carbon, oxy-
gen, nitrogen, fluorine and hydrogen simultaneously in one model  
(Fig. 5e)18,113. In addition, sulfur and phosphorus have to be included 
to cover the space of amino acids, nucleotides and other biomolecules  
(Fig. 5f)114, while most simulations of chemical reactions will include 
halogens and metal/heavy atom-based catalysts. This poses a par-
ticular challenge to many of the previously described approaches 
because the amount of required training data, as well as the size of 
the input representation and thus the size of the machine learn-
ing models, often scale with the number of chemical elements40. 
However, the simulation of reaction dynamics and the simulation of 
large biological systems are two of the most promising applications 
of ML potentials, where the high accuracy of ab initio methods is 
required but not affordable at needed time and length scales115.

The simulation of chemical reactions and the search for transi-
tion states is a prototypical task that is not solvable with classical 
force fields due to their missing ability to break or form bonds. A 
variety of reactive generalizations of classical force fields are being 
developed but it is beyond the scope of this Review to discuss their 
advantages and weaknesses10,116. Ab initio-based simulations of reac-
tions have been demonstrated on selected systems but can become 
computationally intractable, notably for large system sizes, long 
time scales and, particularly relevant to materials design, when a 
large number of systems needs to be analysed117,118. Computationally 
less costly semi-empirical and tight-binding methods119–121, as 
well as quantum mechanics/molecular mechanics (QM/MM)  
models115,122–124, are a promising approach to speed up calculations 
that we will discuss later on in the context of ML potentials.
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Contrary to classical force fields, ML potentials do not distin-
guish between bonded and non-bonded interactions and thus are 
intrinsically capable of simulating chemical reactions. Therefore, 
ML potentials were successfully applied in transition state search125, 
reactions between molecules126–129, organic reactions130, simulation 
of surface scattering101,131, as well as heterogeneous catalysis and sur-
face reactions (Fig. 5g)102,103,132,133. The high-dimensional conforma-
tion space combined with potentially high model uncertainties134 
when extrapolating beyond the training space require particular 
precaution when selecting training data (see the active learning 
approaches introduced in the previous section).

Fast and accurate ML potentials can be used to implement reli-
able and fast transition state search algorithms71 that in the future 
might enable automated workflows for the design of novel cata-
lysts for heterogeneous and homogeneous catalysis, including the 
optimization of substrate-dependent catalysts for industrially 
relevant reactions as well as the development of cheaper metal–
organic catalysts or organocatalysts with similar performance as 
state-of-the-art second-and third-row transition metal-based cata-
lysts. At the same time, ML potentials for the simulation of biologi-
cal processes involving proteins and enzymes can potentially act as 
a computational microscope to better understand the function of  

biomolecules (for example, metabolic processes or trans-membrane 
transport) as well as their interaction with cofactors.

Figure 5h finally shows one example of using ML potentials  
to run (long time scale) excited state dynamics or photodynam-
ics simulations135 using a surface hopping approach. Several  
research groups have shown how multiple potential energy surfaces 
of a small organic molecule can be predicted using molecule specific 
ML potentials51,136,137. While Westermayr et al. predict non-adiabatic 
couplings and spin–orbit couplings close to conical intersec-
tions51, Hu et al. switch from ML potentials to ab initio methods in  
the vicinity of conical intersections137. To our knowledge, a  
more universal, beyond molecule-specific approach to predict 
excited-state potential energy surfaces is yet to be demonstrated. 
Further machine learning-based approaches were applied to  
the modelling of excitation energy transfer138 and proton- 
transfer reactions139.

Perspective on how ML potentials can enable reliable in 
silico experiments and virtualize materials design
Despite promising developments in the field of ML potentials  
during the past few years, they are not meant to replace classical 
force fields and ab initio methods, but to complement them in order 
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to build faster and more accurate models to understand and design 
the materials of the future. In the following section, we will discuss 
ways to further improve the availability and usability of ML poten-
tials to make them more accessible to researchers working in the 
area of materials simulations (see the ‘From an expert method to 
a robust and widely applicable tool’ section). We will furthermore 
discuss potential pathways to accelerate simulations with ML poten-
tials to make them applicable to larger system sizes and simulation 
times (see the ‘From microscopic (nm/ns) to macroscopic systems 
(μm/μs)’ section). Finally, we will outline the substantial impact that 
ML potentials can have on the simulation of chemical reactions and 
catalytic systems. We will discuss recent successes in training ML 
potentials with accuracies beyond DFT and how to combine them 
with active learning approaches to address the large configuration 
space that has to be described when searching for transition states 
and simulating chemical reactions in general (see the ‘ML potentials 
beyond DFT accuracy for reaction simulations’ section).

From an expert method to a robust and widely applicable tool. 
Computational materials design inherently requires methods and 
software tools that can explore the chemical space of molecules 

and materials in a robust and reliable way. Robustness refers to the 
practicality and user-friendliness of the software tools independent 
of the given hardware and software, while reliability refers to the 
accuracy of the results for a wide range of materials and simula-
tion workflows. Thus, robustness and reliability are two important 
requirements that need to be satisfied by all simulation tools, includ-
ing ML potentials, that allow their broad application to answer sci-
entific questions and eventually enable computational materials 
design. Active learning approaches that incorporate variance esti-
mation140 and automatically generate training data while exploring 
chemical space95 are promising for this purpose.

Many state-of-the-art ML potentials are developed for spe-
cific material systems and thus limited in their applicability. The 
generalization and automation of training protocols will enhance 
the applicability of ML potentials by providing automated 
out-of-the-box methods to train and use ML potentials for arbi-
trary systems141. There are two main pathways to help ML poten-
tials become tools that are generally applicable to many classes of 
materials and molecules. One option is the development of datasets 
and models that intrinsically cover a wide range of application areas 
(for example, the ANI-1 potential applicable to organic molecules, 
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similar to many widely applicable classical force fields). Another 
option is the development of methods that generate (initial) train-
ing data in an automated way, combined with easy-to-train expert 
models that involve active learning procedures to reliably explore 
chemical space.

We suggest the development of programs similar to current DFT 
and electronic structure packages that include user-friendly inter-
faces to implement the following key features (Fig. 6): First, the pack-
ages should include pre-trained models such as ANI1 or TensorMol 
0.1 as well as kernel-based models including their training data, 
similar to electronic structure packages that implement a variety 
of DFT functionals or post-Hartree–Fock methods. The package 
has to be able to read a standardized input format for the atomistic 
system that the user wants to simulate and a number of simulation 
types (geometry optimization, MD simulation and so on), similar to 
state-of-the-art MD packages. Beyond that, it would be possible to 
interface such a package with electronic structure methods as well 
as ML frameworks for (re)training of the implemented models. This 
will enable the user-friendly execution of active learning procedures 
as well as fully automated generation of models for new classes of 
materials, which is of particular interest for kernel-based methods 
due to the low data requirements. The full package is illustrated in 
Fig. 6. All required interfaces to databases, external electronic struc-
ture packages, machine learning models as well as MD protocols are 
shown on the left; the core of the ML potential package including 
workflows for data selection/generation model selection/training 
and simulation including uncertainty quantification are shown in 
the middle, potentially extensible with active learning models and 
coarse graining protocols; potential applications of the ML poten-
tial package are illustrated on the right, including high-throughput 
virtual screening and materials design approaches that require 
conformer search and geometry optimization of millions of mol-
ecules, ‘classical’ MD and ML/MM simulations and the simulation 
of chemical simulations and transition state search, both for organic 
and inorganic chemistry and catalysis.

Seminal examples of such efforts include the integration of 
the high-dimensional neural network potentials in LAMMPS142, 
the TensorMol 0.1 model available as a Python package34. The 
ANI118 model as well as SchNetPack143 and sGDML (http://
quantum-machine.org/gdml) provide interfaces to the atomic sim-
ulation environment (ASE). The libAtoms website (http://libatoms.
org) furthermore provides a variety of datasets and models for the 
simulation of inorganic materials that can be extended to be used 
for materials modelling and design.

From microscopic (nm/ns) to macroscopic systems (μm/μs). It 
has been shown that ML potentials offer the possibility to substan-
tially increase system size and time scales that can be reached with 
ab initio MD methods. However, currently available representations 
and models are still computationally more demanding than typical 
classical MD simulations. To further extend current limitations, we 
propose the development of hybrid ML/MM methods. In contrast 
to QM/MM simulations, the similarity of ML and MM potentials 
allows for a tight integration of both methods with smooth and vari-
able transition regions. Initial efforts in combining classical force 
fields and machine learning methods144 and ML/MM simulations145, 
as well as approaches to use machine learning to parameterize 
coarse-grained representations146 were shown in literature.

ML/MM schemes have the potential to substantially accelerate 
state-of-the-art QM/MM simulations of, for example, large biomol-
ecules and enzymatic reactions that require accuracy beyond classi-
cal force fields only in small parts of the system. While the interface 
of QM and MM regions is challenging to define in a fully automated 
way, the description of the interface between machine learning and 
MM regions is more straightforward. Most ML potentials predict 
single-atom energy contributions for each atom based on its local 

chemical environment. Even gradual transitions from the machine 
learning to the MM region is possible, which only requires to map 
bonded interactions of the classical force field to single atoms and 
mix them with the ML energy145. Non-bonded interactions, in par-
ticular the attractive part of the Lennard–Jones potential, as well as 
long-range electrostatic interactions are not intrinsically part of the 
ML potential (Box 1) and remain part of the MM scheme.

Further acceleration of ML potentials-based MD simulations 
can be achieved by lowering the dimensionality of the atomic rep-
resentations of the local chemical environment and overcoming the 
limitations that arise due to the adverse scaling with the number of 
elements40 described by the ML potentials35,147.

Finally, machine learning models can also be used to enhance the 
sampling of MD simulations by learning bias potentials147 and thus 
enable more efficient exploration of the configuration space based 
on data analysis148.

ML potentials beyond DFT accuracy for reaction simula-
tions. Reaction simulations and transition state searches71,149, as 
well as the simulation of excited-state potential energy surfaces, 
are two research areas where ab initio methods such as DFT, 
time-dependent DFT and beyond are required to achieve desired 
accuracy82. The underlying challenge is many-fold: the configura-
tion space that has to be accurately described in reaction simula-
tions or excited states simulations is substantially larger than the 
configuration space encountered at close-to-equilibrium simula-
tions, which requires predictive models that extrapolate well into 
unknown regions of the potential energy surface, a task well-suited 
for an active learning algorithm. At the same time, the accuracy 
on which these configurations have to be described often goes 
beyond the accuracy of widely used density functionals. Both of 
these challenges make the development of ML potentials for reac-
tion simulations and excited-state potential energy surfaces a chal-
lenging task. However, the prospect of reducing the computational 
cost of such simulations in enormous. Having reliable ML poten-
tials for reaction simulations will enable the in silico design and 
optimization of chemical reactions, including heterogeneous and 
homogeneous catalysis as well as enzymatic reactions. A potential 
solution to the reliability challenge are hybrid approaches based on 
active learning schemes where training data is generated on the fly 
whenever needed (see the ‘Uncertainty quantification and active 
learning’ section). Furthermore, it has been shown that ML poten-
tials can be trained on reference data beyond DFT accuracy in a 
transfer learning approach where a first model is trained on a large 
amount of comparably inexpensive data followed by a (partial) 
refinement of the model using a smaller amount of more accu-
rate data. One example is the ANI-1ccx model, which approaches 
CCSD(T)/CBS accuracy on benchmarks for thermochemistry, 
isomerization reactions and torsion potentials of small drug-like 
molecules150.

Outlook
Design and optimization of new molecules and materials increas-
ingly depends on the availability of fast and reliable computational 
tools. ML potentials might revolutionize materials simulations by 
substantially decreasing the computational cost of MD simulations 
while reaching the accuracy and wide applicability of ab initio com-
putations. Recent developments in model architectures and train-
ing data generation including active learning techniques enabled 
successful applications of ML potentials to a variety of materials 
classes. We outlined a roadmap to further increase the usability and 
applicability of ML potentials to mature into a widely used tool for  
materials simulation and design.
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